scholarly journals Gain, Preservation, and Loss of a Group 1a Coronavirus Accessory Glycoprotein

2008 ◽  
Vol 82 (20) ◽  
pp. 10312-10317 ◽  
Author(s):  
Alessio Lorusso ◽  
Nicola Decaro ◽  
Pepijn Schellen ◽  
Peter J. M. Rottier ◽  
Canio Buonavoglia ◽  
...  

ABSTRACT Coronaviruses are positive-strand RNA viruses of extraordinary genetic complexity and diversity. In addition to a common set of genes for replicase and structural proteins, each coronavirus may carry multiple group-specific genes apparently acquired through relatively recent heterologous recombination events. Here we describe an accessory gene, ORF3, unique to canine coronavirus type I (CCoV-I) and characterize its product, glycoprotein gp3. Whereas ORF3 is conserved in CCoV-I, only remnants remain in CCoV-II and CCoV-II-derived porcine and feline coronaviruses. Our findings provide insight into the evolutionary history of coronavirus group 1a and into the dynamics of gain and loss of accessory genes.

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Sergey Alkhovsky ◽  
Sergey Lenshin ◽  
Alexey Romashin ◽  
Tatyana Vishnevskaya ◽  
Oleg Vyshemirsky ◽  
...  

We found and genetically described two novel SARS-like coronaviruses in feces and oral swabs of the greater (R. ferrumequinum) and the lesser (R. hipposideros) horseshoe bats in southern regions of Russia. The viruses, named Khosta-1 and Khosta-2, together with related viruses from Bulgaria and Kenya, form a separate phylogenetic lineage. We found evidence of recombination events in the evolutionary history of Khosta-1, which involved the acquisition of the structural proteins S, E, and M, as well as the nonstructural genes ORF3, ORF6, ORF7a, and ORF7b, from a virus that is related to the Kenyan isolate BtKY72. The examination of bats by RT-PCR revealed that 62.5% of the greater horseshoe bats in one of the caves were positive for Khosta-1 virus, while its overall prevalence was 14%. The prevalence of Khosta-2 was 1.75%. Our results show that SARS-like coronaviruses circulate in horseshoe bats in the region, and we provide new data on their genetic diversity.


1999 ◽  
Vol 73 (5) ◽  
pp. 3524-3533 ◽  
Author(s):  
Mike Garbutt ◽  
Lok Man J. Law ◽  
Honey Chan ◽  
Tom C. Hobman

ABSTRACT Rubella virus is a small enveloped positive-strand RNA virus that assembles on intracellular membranes in a variety of cell types. The virus structural proteins contain all of the information necessary to mediate the assembly of virus-like particles in the Golgi complex. We have recently identified intracellular retention signals within the two viral envelope glycoproteins. E2 contains a Golgi retention signal in its transmembrane domain, whereas a signal for retention in the endoplasmic reticulum has been localized to the transmembrane and cytoplasmic domains of E1 (T. C. Hobman, L. Woodward, and M. G. Farquhar, Mol. Biol. Cell 6:7–20, 1995; T. C. Hobman, H. F. Lemon, and K. Jewell, J. Virol. 71:7670–7680, 1997). In the present study, we have analyzed the role of these retention signals in the assembly of rubella virus-like particles. Deletion or replacement of these domains with analogous regions from other type I membrane glycoproteins resulted in failure of rubella virus-like particles to be secreted from transfected cells. The E1 transmembrane and cytoplasmic domains were not required for targeting of the structural proteins to the Golgi complex and, surprisingly, assembly and budding of virus particles into the lumen of this organelle; however, the resultant particles were not secreted. In contrast, replacement or alteration of the E2 transmembrane or cytoplasmic domain, respectively, abrogated the targeting of the structural proteins to the budding site, and consequently, no virion formation was observed. These results indicate that the transmembrane and cytoplasmic domains of E2 and E1 are required for early and late steps respectively in the viral assembly pathway and that rubella virus morphogenesis is very different from that of the structurally similar alphaviruses.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1033 ◽  
Author(s):  
Pettersson ◽  
Shi ◽  
Eden ◽  
Holmes ◽  
Hesson

Mosquitoes harbor an extensive diversity of ‘insect-specific’ RNA viruses in addition to those important to human and animal health. However, because most studies of the mosquito virome have been conducted at lower latitudes, little is known about the diversity and evolutionary history of RNA viruses sampled from mosquitoes in northerly regions. Here, we compared the RNA virome of two common northern mosquito species, Culex pipiens and Culex torrentium, collected in south-central Sweden. Following bulk RNA-sequencing (meta-transcriptomics) of 12 libraries, comprising 120 specimens of Cx. pipiens and 150 specimens of Cx. torrentium, we identified 40 viruses (representing 14 virus families) of which 28 were novel based on phylogenetic analysis of the RNA-dependent RNA polymerase (RdRp) protein. Hence, we documented similar levels of virome diversity as in mosquitoes sampled from the more biodiverse lower latitudes. Many viruses were also related to those sampled on other continents, indicative of a widespread global movement and/or long host–virus co-evolution. Although the two mosquito species investigated have overlapping geographical distributions and share many viruses, several viruses were only found at a specific location at this scale of sampling, such that local habitat and geography may play an important role in shaping viral diversity in Culex mosquitoes.


2013 ◽  
Vol 30 (6) ◽  
pp. 1263-1269 ◽  
Author(s):  
Etienne Simon-Loriere ◽  
Edward C. Holmes

2019 ◽  
Vol 94 (2) ◽  
pp. 366-377 ◽  
Author(s):  
Bryan M. Gee ◽  
Robert R. Reisz

AbstractNanobamus macrorhinus Schoch and Milner, 2014 is a small amphibamiform temnospondyl from the early Permian Arroyo Formation of Texas. It is most readily characterized by an elongate and partially subdivided naris. This condition is superficially reminiscent of that seen in the coeval trematopids, the group to which N. macrorhinus was originally referred to under an interpretation of the holotype as a larval form. This was discounted by later workers, but the amphibamiform affinities of the specimen were not formalized until recently. The specimen has never been described in the context of its amphibamiform affinities and remains poorly characterized, never having been sampled in a phylogenetic analysis. Here we present a complete, updated osteological description of N. macrorhinus, including an improved characterization of its unique mosaic of plesiomorphic and apomorphic features and clarification of the taxon's autapomorphies. Our analysis of the taxon's phylogenetic position within Amphibamiformes shows that N. macrorhinus was recovered as diverging after basal amphibamiforms, e.g., the micropholids, and before derived amphibamiforms, e.g., the amphibamids. This is supported by the unique mixture of retained plesiomorphies, e.g., nonforeshortened postparietals and an oval choana, and apomorphies, e.g., a narrow interorbital region and slender palatal rami of the pterygoid. These results reflect the complexity of terrestrial amphibamiform diversity and provide further insight into the evolutionary history of the lissamphibian stem in terrestrial environments.


2014 ◽  
Vol 281 (1788) ◽  
pp. 20140806 ◽  
Author(s):  
Daniel B. Thomas ◽  
Kevin J. McGraw ◽  
Michael W. Butler ◽  
Matthew T. Carrano ◽  
Odile Madden ◽  
...  

The broad palette of feather colours displayed by birds serves diverse biological functions, including communication and camouflage. Fossil feathers provide evidence that some avian colours, like black and brown melanins, have existed for at least 160 million years (Myr), but no traces of bright carotenoid pigments in ancient feathers have been reported. Insight into the evolutionary history of plumage carotenoids may instead be gained from living species. We visually surveyed modern birds for carotenoid-consistent plumage colours (present in 2956 of 9993 species). We then used high-performance liquid chromatography and Raman spectroscopy to chemically assess the family-level distribution of plumage carotenoids, confirming their presence in 95 of 236 extant bird families (only 36 family-level occurrences had been confirmed previously). Using our data for all modern birds, we modelled the evolutionary history of carotenoid-consistent plumage colours on recent supertrees. Results support multiple independent origins of carotenoid plumage pigmentation in 13 orders, including six orders without previous reports of plumage carotenoids. Based on time calibrations from the supertree, the number of avian families displaying plumage carotenoids increased throughout the Cenozoic, and most plumage carotenoid originations occurred after the Miocene Epoch (23 Myr). The earliest origination of plumage carotenoids was reconstructed within Passeriformes, during the Palaeocene Epoch (66–56 Myr), and not at the base of crown-lineage birds.


2021 ◽  
Author(s):  
Sergey V Alkhovsky ◽  
Sergey V Lenshin ◽  
Alexey V Romashin ◽  
Tatyana V Vishnevskaya ◽  
Oleg I Vyshemirsky ◽  
...  

We found and genetically described two novel SARS-like coronaviruses in feces and oral swabs of the great (R. ferrumequinum) and the lesser (R. hipposideros) horseshoe bats in southern region of Russia. The viruses, named Khosta-1 and Khosta-2, together with related viruses from Bulgaria and Kenya, form a separate phylogenetic lineage. We found an evidence of recombination events in evolutionary history of Khosta-1, which involved the acquisition of structural proteins S, E, and M as well as nonstructural genes ORF3, ORF6, ORF7a, and ORF7b from a virus that is closely related to Kenyan isolate BtKY72. Examination of bats by RT-PCR revealed that 62,5% of great horseshoe bats in one of the caves were positive for Khosta-1 virus while its overall prevalence was 14%. The prevalence of Khosta-2 was 1,75%. Our results show that SARS-like coronaviruses circulate in horseshoe bats in the region and provide a new data on their genetic diversity.


2019 ◽  
Author(s):  
Matthew Hartfield

AbstractGenome studies of facultative sexual species, which can either reproduce sexually or asexually, are providing insight into the evolutionary consequences of mixed reproductive modes. It is currently unclear to what extent the evolutionary history of facultative sexuals’ genomes can be approximated by the standard coalescent, and if a coalescent effective population size Ne exists. Here, I determine if and when these approximations can be made. When sex is frequent (occurring at a frequency much greater than 1/N per reproduction per generation, for N the actual population size), the underlying genealogy can be approximated by the standard coalescent, with a coalescent Ne ≈ N. When sex is very rare (at frequency much lower than 1/N), approximations for the pairwise coalescent time can be obtained, which is strongly influenced by the frequencies of sex and mitotic gene conversion, rather than N. However, these terms do not translate into a coalescent Ne. These results are used to discuss the best sampling strategies for investigating the evolutionary history of facultative sexual species.


Author(s):  
Andrew Briggs ◽  
Hans Halvorson ◽  
Andrew Steane

The chapter discusses the history of life on Earth, and the lessons to be learned from the neo-Darwinian synthesis of evolutionary biology. The long and complex sequence of events in the evolutionary history of life on Earth requires considered interpretation. The neo-Darwinian synthesis is well-supported by evidence and gives rich insight into this process, but does not itself furnish a complete explanation or understanding of living things. This is because a process of exploration can only explore; it cannot fully dictate and can only partially constrain what type of thing will be found. What is found is constrained by other considerations, such as what is possible, and what can make sense. A brief critique of some of Richard Dawkins’ work is given, and also of the movement known as ‘Intelligent Design’. Education policy is well served by a fair appraisal of informed opinion in this area.


Sign in / Sign up

Export Citation Format

Share Document