scholarly journals Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif

2015 ◽  
Vol 89 (20) ◽  
pp. 10156-10175 ◽  
Author(s):  
Matthew W. Breed ◽  
Samra E. Elser ◽  
Workineh Torben ◽  
Andrea P. O. Jordan ◽  
Pyone P. Aye ◽  
...  

ABSTRACTDeletion of Gly-720 and Tyr-721 from a highly conserved GYxxØ trafficking signal in the SIVmac239 envelope glycoprotein cytoplasmic domain, producing a virus termed ΔGY, leads to a striking perturbation in pathogenesis in rhesus macaques (Macaca mulatta). Infected macaques develop immune activation and progress to AIDS, but with only limited and transient infection of intestinal CD4+T cells and an absence of microbial translocation. Here we evaluated ΔGY in pig-tailed macaques (Macaca nemestrina), a species in which SIVmac239 infection typically leads to increased immune activation and more rapid progression to AIDS than in rhesus macaques. In pig-tailed macaques, ΔGY also replicated acutely to high peak plasma RNA levels identical to those for SIVmac239 and caused only transient infection of CD4+T cells in the gut lamina propria and no microbial translocation. However, in marked contrast to rhesus macaques, 19 of 21 pig-tailed macaques controlled ΔGY replication with plasma viral loads of <15 to 50 RNA copies/ml. CD4+T cells were preserved in blood and gut for up to 100 weeks with no immune activation or disease progression. Robust antiviral CD4+T cell responses were seen, particularly in the gut. Anti-CD8 antibody depletion demonstrated CD8+cellular control of viral replication. Two pig-tailed macaques progressed to disease with persisting viremia and possible compensatory mutations in the cytoplasmic tail. These studies demonstrate a marked perturbation in pathogenesis caused by ΔGY's ablation of the GYxxØ trafficking motif and reveal, paradoxically, that viral control is enhanced in a macaque species typically predisposed to more pathogenic manifestations of simian immunodeficiency virus (SIV) infection.IMPORTANCEThe pathogenesis of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) reflects a balance between viral replication, host innate and adaptive antiviral immune responses, and sustained immune activation that in humans and Asian macaques is associated with persistent viremia, immune escape, and AIDS. Among nonhuman primates, pig-tailed macaques following SIV infection are predisposed to more rapid disease progression than are rhesus macaques. Here, we show that disruption of a conserved tyrosine-based cellular trafficking motif in the viral transmembrane envelope glycoprotein cytoplasmic tail leads in pig-tailed macaques to a unique phenotype in which high levels of acute viral replication are followed by elite control, robust cellular responses in mucosal tissues, and no disease. Paradoxically, control of this virus in rhesus macaques is only partial, and progression to AIDS occurs. This novel model should provide a powerful tool to help identify host-specific determinants for viral control with potential relevance for vaccine development.

2009 ◽  
Vol 84 (2) ◽  
pp. 753-764 ◽  
Author(s):  
Lara Vojnov ◽  
Jason S. Reed ◽  
Kim L. Weisgrau ◽  
Eva G. Rakasz ◽  
John T. Loffredo ◽  
...  

ABSTRACT The immune correlates of human/simian immunodeficiency virus control remain elusive. While CD8+ T lymphocytes likely play a major role in reducing peak viremia and maintaining viral control in the chronic phase, the relative antiviral efficacy of individual virus-specific effector populations is unknown. Conventional assays measure cytokine secretion of virus-specific CD8+ T cells after cognate peptide recognition. Cytokine secretion, however, does not always directly translate into antiviral efficacy. Recently developed suppression assays assess the efficiency of virus-specific CD8+ T cells to control viral replication, but these assays often use cell lines or clones. We therefore designed a novel virus production assay to test the ability of freshly ex vivo-sorted simian immunodeficiency virus (SIV)-specific CD8+ T cells to suppress viral replication from SIVmac239-infected CD4+ T cells. Using this assay, we established an antiviral hierarchy when we compared CD8+ T cells specific for 12 different epitopes. Antiviral efficacy was unrelated to the disease status of each animal, the protein from which the tested epitopes were derived, or the major histocompatibility complex (MHC) class I restriction of the tested epitopes. Additionally, there was no correlation with the ability to suppress viral replication and epitope avidity, epitope affinity, CD8+ T-cell cytokine multifunctionality, the percentage of central and effector memory cell populations, or the expression of PD-1. The ability of virus-specific CD8+ T cells to suppress viral replication therefore cannot be determined using conventional assays. Our results suggest that a single definitive correlate of immune control may not exist; rather, a successful CD8+ T-cell response may be comprised of several factors.


2003 ◽  
Vol 77 (2) ◽  
pp. 1245-1256 ◽  
Author(s):  
Lisa A. Chakrabarti ◽  
Karin J. Metzner ◽  
Tijana Ivanovic ◽  
Hua Cheng ◽  
Jean Louis-Virelizier ◽  
...  

ABSTRACT The live, attenuated vaccine simian immunodeficiency virus SIVmac239Δnef efficiently protects rhesus macaques against infection with wild-type SIVmac but occasionally causes CD4+ T-cell depletion and progression to simian AIDS (SAIDS). Virus recovered from a vaccinated macaque (Rh1490) that progressed to SAIDS had acquired an additional deletion in the nef gene, resulting in a frameshift that restored the original nef open reading frame (R. I. Connor, D. C. Montefiori, J. M. Binley, J. P. Moore, S. Bonhoeffer, A. Gettie, E. A. Fenamore, K. E. Sheridan, D. D. Ho, P. J. Dailey, and P. A. Marx, J. Virol. 72:7501-7509, 1998). Intravenous inoculation of the Rh1490 viral isolate into four naive rhesus macaques induced CD4+ T-cell depletion and disease in three out of four animals within 2 years, indicating a restoration of virulence. A DNA fragment encompassing the truncated nef gene amplified from the Rh1490 isolate was inserted into the genetic backbone of SIVmac239. The resulting clone, SIVmac239-Δ2nef, expressed a Nef protein of approximately 23 kDa, while the original SIVmac239Δnef clone expressed a shorter protein of 8 kDa. The revertant form of Nef did not cause downregulation of CD4, CD3, or major histocompatibility complex class I. The infectivity of SIVmac239-Δ2nef was similar to that of SIVmac239Δnef in single-cycle assays using indicator cell lines. In contrast, SIVmac239-Δ2nef replicated more efficiently than SIVmac239Δnef in peripheral blood mononuclear cell (PBMC) cultures infected under unstimulated conditions. The p27 Gag antigen levels in SIVmac239-Δ2nef-infected cultures were still lower than those obtained with wild-type SIVmac239, consistent with a partial recovery of Nef function. The transcriptional activity of long terminal repeat (LTR)-luciferase constructs containing the nef deletions did not differ markedly from that of wild-type LTR. Introduction of a premature stop codon within Nef-Δ2 abolished the replicative advantage in PBMCs, demonstrating that the Nef-Δ2 protein, rather than the structure of the U3 region of the LTR, was responsible for the increase in viral replication. Taken together, these results show that SIV with a deletion in the nef gene can revert to virulence and that expression of a form of nef with multiple deletions may contribute to this process by increasing viral replication.


2008 ◽  
Vol 82 (22) ◽  
pp. 11181-11196 ◽  
Author(s):  
Meritxell Genescà ◽  
Pamela J. Skinner ◽  
Jung Joo Hong ◽  
Jun Li ◽  
Ding Lu ◽  
...  

ABSTRACT The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8+ T-cell response in SHIV-immunized monkeys by CD8+ lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8+ T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8+ T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8+ T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8+ T cells can provide significant protection from vaginal SIV challenge.


1999 ◽  
Vol 191 (11) ◽  
pp. 1921-1932 ◽  
Author(s):  
Karin J. Metzner ◽  
Xia Jin ◽  
Fred V. Lee ◽  
Agegnehu Gettie ◽  
Daniel E. Bauer ◽  
...  

The role of CD8+ T lymphocytes in controlling replication of live, attenuated simian immunodeficiency virus (SIV) was investigated as part of a vaccine study to examine the correlates of protection in the SIV/rhesus macaque model. Rhesus macaques immunized for &gt;2 yr with nef-deleted SIV (SIVmac239Δnef) and protected from challenge with pathogenic SIVmac251 were treated with anti-CD8 antibody (OKT8F) to deplete CD8+ T cells in vivo. The effects of CD8 depletion on viral load were measured using a novel quantitative assay based on real-time polymerase chain reaction using molecular beacons. This assay allows simultaneous detection of both the vaccine strain and the challenge virus in the same sample, enabling direct quantification of changes in each viral population. Our results show that CD8+ T cells were depleted within 1 h after administration of OKT8F, and were reduced by as much as 99% in the peripheral blood. CD8+ T cell depletion was associated with a 1–2 log increase in SIVmac239Δnef plasma viremia. Control of SIVmac239Δnef replication was temporally associated with the recovery of CD8+ T cells between days 8 and 10. The challenge virus, SIVmac251, was not detectable in either the plasma or lymph nodes after depletion of CD8+ T cells. Overall, our results indicate that CD8+ T cells play an important role in controlling replication of live, attenuated SIV in vivo.


2008 ◽  
Vol 82 (19) ◽  
pp. 9629-9638 ◽  
Author(s):  
Monica Vaccari ◽  
Joseph Mattapallil ◽  
Kaimei Song ◽  
Wen-Po Tsai ◽  
Anna Hryniewicz ◽  
...  

ABSTRACT Adaptive CD4+ and CD8+ T-cell responses have been associated with control of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication. Here, we have designed a study with Indian rhesus macaques to more directly assess the role of CD8 SIV-specific responses in control of viral replication. Macaques were immunized with a DNA prime-modified vaccinia virus Ankara (MVA)-SIV boost regimen under normal conditions or under conditions of antibody-induced CD4+ T-cell deficiency. Depletion of CD4+ cells was performed in the immunized macaques at the peak of SIV-specific CD4+ T-cell responses following the DNA prime dose. A group of naïve macaques was also treated with the anti-CD4 depleting antibody as a control, and an additional group of macaques immunized under normal conditions was depleted of CD8+ T cells prior to challenge exposure to SIVmac251. Analysis of the quality and quantity of vaccine-induced CD8+ T cells demonstrated that SIV-specific CD8+ T cells generated under conditions of CD4+ T-cell deficiency expressed low levels of Bcl-2 and interleukin-2 (IL-2), and plasma virus levels increased over time. Depletion of CD8+ T cells prior to challenge exposure abrogated vaccine-induced protection as previously shown. These data support the notion that adaptive CD4+ T cells are critical for the generation of effective CD8+ T-cell responses to SIV that, in turn, contribute to protection from AIDS. Importantly, they also suggest that long-term protection from disease will be afforded only by T-cell vaccines for HIV that provide a balanced induction of CD4+ and CD8+ T-cell responses and protect against early depletion of CD4+ T cells postinfection.


2015 ◽  
Vol 89 (20) ◽  
pp. 10625-10636 ◽  
Author(s):  
Jennifer N. Rainho ◽  
Mauricio A. Martins ◽  
Francesc Cunyat ◽  
Ian T. Watkins ◽  
David I. Watkins ◽  
...  

ABSTRACTSimian immunodeficiency virus (SIV)-specific CD8+T cells kill SIV-infected CD4+T cells in an major histocompatibility complex class I (MHC-I)-dependent manner. However, they are reportedly less efficient at killing SIV-infected macrophages. Since the viral accessory protein Nef has been shown to downregulate MHC-I molecules and enhance cytotoxic T lymphocyte (CTL) evasion in human immunodeficiency virus type 1 (HIV-1)-infected CD4+T cells, we examined whether Nef played a role in protecting SIV-infected macrophages from killing by SIV-specific CD8+T cells. To explore the role of Nef in CD8+T cell evasion, we compared the ability of freshly sorted SIV-specific CD8+T cells to readily suppress viral replication or eliminate CD4+T cells or monocyte-derived macrophages infected with SIV variants containing wild-type (WT) or mutatednefgenes. As expected, SIV-specific CD8+T cells suppressed viral replication and eliminated the majority of SIV-infected CD4+T cells, and this killing was enhanced in CD4+T cells infected with thenefvariants. However, macrophages infected withnefvariants that disrupt MHC-I downregulation did not promote rapid killing by freshly isolated CD8+T cells. These results suggest that mechanisms other than Nef-mediated MHC-I downregulation govern the resistance of SIV-infected macrophages to CD8+T cell-mediated killing. This study has implications for viral persistence and suggests that macrophages may afford primate lentiviruses some degree of protection from immune surveillance.IMPORTANCEMyeloid cells are permissive for HIV/SIV replicationin vitroand may contribute to viral persistencein vivo. While many studies have been geared to understanding how CD8+T cells control viral replication in CD4+T cells, the role of these cells in controlling viral replication in macrophages is less clear. Primary, unstimulated CD8+T cells insignificantly suppress viral replication or eliminate SIV-infected macrophages. Since the viral Nef protein downregulates MHC-I and provides infected cells some degree of protection from CD8+T cell-mediated effector functions, we evaluated whether Nef may be contributing to the resistance of macrophages to CD8+T cell suppression. Our results suggest that Nef is not involved in protecting infected macrophages from CD8+T cell killing and suggest that other mechanisms are involved in macrophage evasion from CD8 surveillance.


2004 ◽  
Vol 78 (12) ◽  
pp. 6399-6408 ◽  
Author(s):  
Lisa LaFranco-Scheuch ◽  
Kristina Abel ◽  
Norbert Makori ◽  
Kristina Rothaeusler ◽  
Christopher J. Miller

ABSTRACT Viral suppression by noncytolytic CD8+ T cells, in addition to that by classic antiviral CD8+ cytotoxic T lymphocytes, has been described for human immunodeficiency virus and simian immunodeficiency virus (SIV) infections. However, the role of soluble effector molecules, especially beta-chemokines, in antiviral immunity is still controversial. In an attenuated vaccine model, approximately 60% of animals immunized with simian/human immunodeficiency virus (SHIV) 89.6 and then challenged intravaginally with SIVmac239 controlled viral replication (viral RNA level in plasma, <104 copies/ml) and were considered protected (K. Abel, L. Compton, T. Rourke, D. Montefiori, D. Lu, K. Rothaeusler, L. Fritts, K. Bost, and C. J. Miller, J. Virol. 77:3099-3118, 2003). To determine the in vivo importance of beta-chemokine secretion and CD8+-T-cell proliferation in the control of viral replication in this vaccine model, we examined the relationship between viral RNA levels in the axillary and genital lymph nodes of vaccinated, protected (n = 20) and vaccinated, unprotected (n = 11) monkeys by measuring beta-chemokine mRNA levels and protein expression, the frequency of CD8+ T cells expressing beta-chemokines, and the extent of CD8+-T-cell proliferation. Tissues from uninfected (n = 3) and unvaccinated, SIVmac239-infected (n = 9) monkeys served as controls. Axillary and genital lymph nodes from unvaccinated and vaccinated, unprotected monkeys had significantly higher beta-chemokine mRNA expression levels and increased numbers of beta-chemokine-positive cells than did vaccinated, protected animals. Furthermore, the lymph nodes of vaccinated, unprotected monkeys had significantly higher numbers of beta-chemokine+ CD8+ T cells than did vaccinated, protected monkeys. Lymph nodes from vaccinated, unprotected animals also had significantly more CD8+-T-cell proliferation and marked lymph node hyperplasia than the lymph nodes of vaccinated, protected monkeys. Thus, higher levels of virus replication were associated with increased beta-chemokine secretion and there is no evidence that beta-chemokines contributed to the SHIV89.6-mediated control of viral replication after intravaginal challenge with SIVmac239.


Sign in / Sign up

Export Citation Format

Share Document