scholarly journals Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

2015 ◽  
Vol 89 (18) ◽  
pp. 9653-9664 ◽  
Author(s):  
Gabriela N. Condezo ◽  
Roberto Marabini ◽  
Silvia Ayora ◽  
José M. Carazo ◽  
Raúl Alba ◽  
...  

ABSTRACTAdenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating.IMPORTANCEAdenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in the capsid and the molecular details of capsid assembly. Here, we provide evidence supporting one of the two current models for capsid architecture. We also show for the first time the location of the packaging protein L1 52/55k in particles lacking the virus genome and how this location changes during maturation. Our results contribute to clarifying standing questions in adenovirus capsid architecture and provide new details on the role of L1 52/55k protein in assembly.

2020 ◽  
Vol 76 (1) ◽  
pp. 63-72
Author(s):  
Lingxiao Zeng ◽  
Wei Ding ◽  
Quan Hao

The combination of cryo-electron microscopy (cryo-EM) and X-ray crystallography reflects an important trend in structural biology. In a previously published study, a hybrid method for the determination of X-ray structures using initial phases provided by the corresponding parts of cryo-EM maps was presented. However, if the target structure of X-ray crystallography is not identical but homologous to the corresponding molecular model of the cryo-EM map, then the decrease in the accuracy of the starting phases makes the whole process more difficult. Here, a modified hybrid method is presented to handle such cases. The whole process includes three steps: cryo-EM map replacement, phase extension by NCS averaging and dual-space iterative model building. When the resolution gap between the cryo-EM and X-ray crystallographic data is large and the sequence identity is low, an intermediate stage of model building is necessary. Six test cases have been studied with sequence identity between the corresponding molecules in the cryo-EM and X-ray structures ranging from 34 to 52% and with sequence similarity ranging from 86 to 91%. This hybrid method consistently produced models with reasonable R work and R free values which agree well with the previously determined X-ray structures for all test cases, thus indicating the general applicability of the method for X-ray structure determination of homologues using cryo-EM maps as a starting point.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 718
Author(s):  
Solène Besson ◽  
Charles Vragniau ◽  
Emilie Vassal-Stermann ◽  
Marie Claire Dagher ◽  
Pascal Fender

Many geometric forms are found in nature, some of them adhering to mathematical laws or amazing aesthetic rules. One of the best-known examples in microbiology is the icosahedral shape of certain viruses with 20 triangular facets and 12 edges. What is less known, however, is that a complementary object displaying 12 faces and 20 edges called a ‘dodecahedron’ can be produced in huge amounts during certain adenovirus replication cycles. The decahedron was first described more than 50 years ago in the human adenovirus (HAdV3) viral cycle. Later on, the expression of this recombinant scaffold, combined with improvements in cryo-electron microscopy, made it possible to decipher the structural determinants underlying their architecture. Recently, this particle, which mimics viral entry, was used to fish the long elusive adenovirus receptor, desmoglein-2, which serves as a cellular docking for some adenovirus serotypes. This breakthrough enabled the understanding of the physiological role played by the dodecahedral particles, showing that icosahedral and dodecahedral particles live more than a simple platonic story. All these points are developed in this review, and the potential use of the dodecahedron in therapeutic development is discussed.


2014 ◽  
Vol 188 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Amélie Leforestier ◽  
Pierre Levitz ◽  
Thomas Preat ◽  
Peter Guttmann ◽  
Laurent J. Michot ◽  
...  

Science ◽  
2020 ◽  
Vol 370 (6514) ◽  
pp. 360-364 ◽  
Author(s):  
Stephanie M. Bester ◽  
Guochao Wei ◽  
Haiyan Zhao ◽  
Daniel Adu-Ampratwum ◽  
Naseer Iqbal ◽  
...  

The potent HIV-1 capsid inhibitor GS-6207 is an investigational principal component of long-acting antiretroviral therapy. We found that GS-6207 inhibits HIV-1 by stabilizing and thereby preventing functional disassembly of the capsid shell in infected cells. X-ray crystallography, cryo–electron microscopy, and hydrogen-deuterium exchange experiments revealed that GS-6207 tightly binds two adjoining capsid subunits and promotes distal intra- and inter-hexamer interactions that stabilize the curved capsid lattice. In addition, GS-6207 interferes with capsid binding to the cellular HIV-1 cofactors Nup153 and CPSF6 that mediate viral nuclear import and direct integration into gene-rich regions of chromatin. These findings elucidate structural insights into the multimodal, potent antiviral activity of GS-6207 and provide a means for rationally developing second-generation therapies.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1603-C1603
Author(s):  
Vijay Reddy ◽  
Glen Nemerow

Human adenoviruses (HAdVs) are large (~150nm in diameter, 150MDa) nonenveloped double-stranded DNA (dsDNA) viruses that cause respiratory, ocular, and enteric diseases. The capsid shell of adenovirus (Ad) comprises multiple copies of three major capsid proteins (MCP: hexon, penton base and fiber) and four minor/cement proteins (IIIa, VI, VIII and IX) that are organized with pseudo T=25 icosahedral symmetry. In addition, six other proteins (V, VII, μ, IVa2, terminal protein and protease) are encapsidated along with the 36Kb dsDNA genome inside the capsid. The crystal structures of all three MCPs are known and so is their organization in the capsid from prior X-ray crystallography and cryoEM analyses. However structures and locations of various cement proteins are of considerable debate. We have determined and refined the structure of an entire human adenovirus employing X-ray crystallpgraphic methods at 3.8Å resolution. Adenovirus cement proteins play crucial roles in virion assembly, disassembly, cell entry and infection. Based on the refined crystal structure of adenovirus, we have determined the structure of the cement protein VI, a key membrane-lytic molecule and its associations with proteins V and VIII, which together glue peripentonal hexons beneath vertex region and connect them to rest of the capsid. Following virion maturation, the cleaved N-terminal pro-peptide of VI is observed deep in the peripentonal hexon cavity, detached from the membrane-lytic domain. Furthermore, we have significantly revised the recent cryoEM models for proteins IIIa and IX and both are located on the capsid exterior. Together, the cement proteins exclusively stabilize the hexon shell, thus rendering penton vertices the weakest links of the adenovirus capsid. Adenovirus cement protein structures reveal the molecular basis of the maturation cleavage of VI that is needed for endosome rupture and delivery of the virion into cytoplasm.


2015 ◽  
Vol 32 (3) ◽  
pp. 436-453 ◽  
Author(s):  
Kira J. Weissman

This review covers a breakthrough in the structural biology of the gigantic modular polyketide synthases (PKS): the structural characterization of intact modules by single-particle cryo-electron microscopy and small-angle X-ray scattering.


Sign in / Sign up

Export Citation Format

Share Document