scholarly journals Inhibition of Protein Kinase R Activation and Upregulation of GADD34 Expression Play a Synergistic Role in Facilitating Coronavirus Replication by Maintaining De Novo Protein Synthesis in Virus-Infected Cells

2009 ◽  
Vol 83 (23) ◽  
pp. 12462-12472 ◽  
Author(s):  
Xiaoxing Wang ◽  
Ying Liao ◽  
Pei Ling Yap ◽  
Kim J. Png ◽  
James P. Tam ◽  
...  

ABSTRACT A diversity of strategies is evolved by RNA viruses to manipulate the host translation machinery in order to create an optimal environment for viral replication and progeny production. One of the common viral targets is the α subunit of eukaryotic initiation factor 2 (eIF-2α). In this report, we show that phosphorylation of eIF-2α was severely suppressed in human and animal cells infected with the coronavirus infectious bronchitis virus (IBV). To understand whether this suppression is through inhibition of protein kinase R (PKR), the double-stranded-RNA-dependent kinase that is one of the main kinases responsible for phosphorylation of eIF-2α, cells infected with IBV were analyzed by Western blotting. The results showed that the level of phosphorylated PKR was greatly reduced in IBV-infected cells. Overexpression of IBV structural and nonstructural proteins (nsp) demonstrated that nsp2 is a weak PKR antagonist. Furthermore, GADD34, a component of the protein phosphatase 1 (PP1) complex, which dephosphorylates eIF-2α, was significantly induced in IBV-infected cells. Inhibition of the PP1 activity by okadaic acid and overexpression of GADD34, eIF-2α, and PKR, as well as their mutant constructs in virus-infected cells, showed that these viral regulatory strategies played a synergistic role in facilitating coronavirus replication. Taken together, these results confirm that IBV has developed a combination of two mechanisms, i.e., blocking PKR activation and inducing GADD34 expression, to maintain de novo protein synthesis in IBV-infected cells and, meanwhile, to enhance viral replication.

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Ting Zhu ◽  
Xueli Jiang ◽  
Hangkuo Xin ◽  
Xiaohui Zheng ◽  
Xiaonuan Xue ◽  
...  

AbstractViruses have evolved multiple strategies to manipulate their host’s translational machinery for the synthesis of viral proteins. A common viral target is the alpha subunit of eukaryotic initiation factor 2 (eIF2α). In this study, we show that global protein synthesis was increased but the eIF2α phosphorylation level was markedly decreased in porcine kidney 15 (PK15) cells infected with pseudorabies virus (PRV), a swine herpesvirus. An increase in the eIF2α phosphorylation level by salubrinal treatment or transfection of constructs expressing wild-type eIF2α or an eIF2α phosphomimetic [eIF2α(S51D)] attenuated global protein synthesis and suppressed PRV replication. To explore the mechanism involved in the inhibition of eIF2α phosphorylation during PRV infection, we examined the phosphorylation status of protein kinase R-like endoplasmic reticulum kinase (PERK) and double-stranded RNA-dependent protein kinase R (PKR), two kinases that regulate eIF2α phosphorylation during infection with numerous viruses. We found that the level of neither phosphorylated (p)-PERK nor p-PKR was altered in PRV-infected cells or the lungs of infected mice. However, the expression of growth arrest and DNA damage-inducible protein 34 (GADD34), which promotes eIF2α dephosphorylation by recruiting protein phosphatase 1 (PP1), was significantly induced both in vivo and in vitro. Knockdown of GADD34 and inhibition of PP1 activity by okadaic acid treatment led to increased eIF2α phosphorylation but significantly suppressed global protein synthesis and inhibited PRV replication. Collectively, these results demonstrated that PRV induces GADD34 expression to promote eIF2α dephosphorylation, thereby maintaining de novo protein synthesis and facilitating viral replication.


2010 ◽  
Vol 84 (20) ◽  
pp. 10457-10466 ◽  
Author(s):  
Margarito Rojas ◽  
Carlos F. Arias ◽  
Susana López

ABSTRACT The eukaryotic initiation translation factor 2 (eIF2) represents a key point in the regulation of protein synthesis. This factor delivers the initiator Met-tRNA to the ribosome, a process that is conserved in all eukaryotic cells. Many types of stress reduce global translation by triggering the phosphorylation of the α subunit of eIF2, which reduces the formation of the preinitiation translation complexes. Early during rotavirus infection, eIF2α becomes phosphorylated, and even under these conditions viral protein synthesis is not affected, while most of the cell protein synthesis is blocked. Here, we found that the kinase responsible for the phosphorylation of eIF2α in rotavirus-infected cells is PKR, since in mouse embryonic fibroblasts deficient in the kinase domain of PKR, or in MA104 cells where the expression of PKR was knocked down by RNA interference, eIF2α was not phosphorylated upon rotavirus infection. The viral component responsible for the activation of PKR seems to be viral double-stranded RNA, which is found in the cytoplasm of infected cells, outside viroplasms. Taken together, these results suggest that rotaviruses induce the PKR branch of the interferon system and have evolved a mechanism to translate its proteins, surpassing the block imposed by eIF2α phosphorylation.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Jennifer Deborah Wuerth ◽  
Matthias Habjan ◽  
Markus Kainulainen ◽  
Besim Berisha ◽  
Damien Bertheloot ◽  
...  

ABSTRACT RNA-activated protein kinase (PKR) is a major innate immune factor that senses viral double-stranded RNA (dsRNA) and phosphorylates eukaryotic initiation factor (eIF) 2α. Phosphorylation of the α subunit converts the eIF2αβγ complex into a stoichiometric inhibitor of eukaryotic initiation factor eIF2B, thus halting mRNA translation. To escape this protein synthesis shutoff, viruses have evolved countermechanisms such as dsRNA sequestration, eIF-independent translation by an internal ribosome binding site, degradation of PKR, or dephosphorylation of PKR or of phospho-eIF2α. Here, we report that sandfly fever Sicilian phlebovirus (SFSV) confers such a resistance without interfering with PKR activation or eIF2α phosphorylation. Rather, SFSV expresses a nonstructural protein termed NSs that strongly binds to eIF2B. Although NSs still allows phospho-eIF2α binding to eIF2B, protein synthesis and virus replication are unhindered. Hence, SFSV encodes a unique PKR antagonist that acts by rendering eIF2B resistant to the inhibitory action of bound phospho-eIF2α. IMPORTANCE RNA-activated protein kinase (PKR) is one of the most powerful antiviral defense factors of the mammalian host. PKR acts by phosphorylating mRNA translation initiation factor eIF2α, thereby converting it from a cofactor to an inhibitor of mRNA translation that strongly binds to initiation factor eIF2B. To sustain synthesis of their proteins, viruses are known to counteract this on the level of PKR or eIF2α or by circumventing initiation factor-dependent translation altogether. Here, we report a different PKR escape strategy executed by sandfly fever Sicilian virus (SFSV), a member of the increasingly important group of phleboviruses. We found that the nonstructural protein NSs of SFSV binds to eIF2B and protects it from inactivation by PKR-generated phospho-eIF2α. Protein synthesis is hence maintained and the virus can replicate despite ongoing full-fledged PKR signaling in the infected cells. Thus, SFSV has evolved a unique strategy to escape the powerful antiviral PKR.


2016 ◽  
Vol 90 (8) ◽  
pp. 3839-3848 ◽  
Author(s):  
Benjamin Ziehr ◽  
Heather A. Vincent ◽  
Nathaniel J. Moorman

ABSTRACTHuman cytomegalovirus (HCMV) counteracts host defenses that otherwise act to limit viral protein synthesis. One such defense is the antiviral kinase protein kinase R (PKR), which inactivates the eukaryotic initiation factor 2 (eIF2) translation initiation factor upon binding to viral double-stranded RNAs. Previously, the viral TRS1 and IRS1 proteins were found to antagonize the antiviral kinase PKR outside the context of HCMV infection, and the expression of either pTRS1 or pIRS1 was shown to be necessary for HCMV replication. In this study, we found that expression of either pTRS1 or pIRS1 is necessary to prevent PKR activation during HCMV infection and that antagonism of PKR is critical for efficient viral replication. Consistent with a previous study, we observed decreased overall levels of protein synthesis, reduced viral protein expression, and diminished virus replication in the absence of both pTRS1 and pIRS1. In addition, both PKR and eIF2α were phosphorylated during infection when pTRS1 and pIRS1 were absent. We also found that expression of pTRS1 was both necessary and sufficient to prevent stress granule formation in response to eIF2α phosphorylation. Depletion of PKR prevented eIF2α phosphorylation, rescued HCMV replication and protein synthesis, and reversed the accumulation of stress granules in infected cells. Infection with an HCMV mutant lacking the pTRS1 PKR binding domain resulted in PKR activation, suggesting that pTRS1 inhibits PKR through a direct interaction. Together our results show that antagonism of PKR by HCMV pTRS1 and pIRS1 is critical for viral protein expression and efficient HCMV replication.IMPORTANCETo successfully replicate, viruses must counteract host defenses that limit viral protein synthesis. We have identified inhibition of the antiviral kinase PKR by the viral proteins TRS1 and IRS1 and shown that this is a critical step in HCMV replication. Our results suggest that inhibiting pTRS1 and pIRS1 function or restoring PKR activity during infection may be a successful strategy to limit HCMV disease.


2020 ◽  
Author(s):  
Prerana Shrestha ◽  
Zhe Shan ◽  
Maggie Marmarcz ◽  
Karen San Agustin Ruiz ◽  
Adam Taye Zerihoun ◽  
...  

To survive in a dynamic environment, animals need to identify and appropriately respond to stimuli that signal danger1,2. At the same time, animal survival also depends on suppressing the threat response during a stimulus that predicts absence of threat, i.e. safety3-5. Understanding the biological substrates of differential threat memories in which animals learn to flexibly switch between expressing and suppressing defensive responses to a threat-predictive cue and a safety cue, respectively, is critical for developing treatments for memory disorders such as PTSD6. A key brain area for processing and storing threat memories is the centrolateral amygdala (CeL), which receives convergent sensory inputs from the parabrachial nucleus and the basolateral amygdala and connects directly to the output nucleus of amygdala, the centromedial nucleus, to mediate defensive responses7-9. Despite a plethora of studies on the importance of neuronal activity in specific CeL neuronal populations during memory acquisition and retrieval10-12, little is known about regulation of their protein synthesis machinery. Consolidation of long-term, but not short-term, threat memories requires de novo protein synthesis, which suggests that the translation machinery in CeL interneurons is tightly regulated in order to stabilize associative memories. Herein, we have applied intersectional chemogenetic strategies in CeL interneurons to block cell type-specific translation initiation programs that are sensitive to depletion of eukaryotic initiation factor 4E (eIF4E) and phosphorylation of eukaryotic initiation factor 2α (p-eIF2α), respectively. We show that in a differential threat conditioning paradigm, de novo translation in somatostatin-expressing (SOM) interneurons in the CeL is necessary for long-term storage of conditioned threat response whereas de novo translation in protein kinase Cδ-expressing (PKCδ) interneurons in the CeL is essential for storing conditioned response inhibition to a safety cue. Further, we show that oxytocinergic neuromodulation of PKCδ interneurons during differential threat learning is important for long-lasting cued threat discrimination. Our results indicate that the molecular elements of a differential threat memory trace are compartmentalized in distinct CeL interneuron populations and provide new mechanistic insight into the role of de novo protein synthesis in consolidation of long-term memories.


Sign in / Sign up

Export Citation Format

Share Document