scholarly journals Interleukin-6 Activates Signal Transducer and Activator of Transcription and Mitogen-Activated Protein Kinase Signal Transduction Pathways and Induces De Novo Protein Synthesis in Human Neuronal Cells

2002 ◽  
Vol 73 (5) ◽  
pp. 2009-2017 ◽  
2000 ◽  
Vol 20 (17) ◽  
pp. 6426-6434 ◽  
Author(s):  
Lori A. Neely ◽  
Charles S. Hoffman

ABSTRACT A significant challenge to our understanding of eukaryotic transcriptional regulation is to determine how multiple signal transduction pathways converge on a single promoter to regulate transcription in divergent fashions. To study this, we have investigated the transcriptional regulation of theSchizosaccharomyces pombe fbp1 gene that is repressed by a cyclic AMP (cAMP)-dependent protein kinase A (PKA) pathway and is activated by a stress-activated mitogen-activated protein kinase (MAPK) pathway. In this study, we identified and characterized twocis-acting elements in the fbp1 promoter required for activation of fbp1 transcription. Upstream activation site 1 (UAS1), located approximately 900 bp from the transcriptional start site, resembles a cAMP response element (CRE) that is the binding site for the atf1-pcr1 heterodimeric transcriptional activator. Binding of this activator to UAS1 is positively regulated by the MAPK pathway and negatively regulated by PKA. UAS2, located approximately 250 bp from the transcriptional start site, resembles a Saccharomyces cerevisiae stress response element. UAS2 is bound by transcriptional activators and repressors regulated by both the PKA and MAPK pathways, although atf1 itself is not present in these complexes. Transcriptional regulation offbp1 promoter constructs containing only UAS1 or UAS2 confirms that the PKA and MAPK regulation is targeted to both sites. We conclude that the PKA and MAPK signal transduction pathways regulatefbp1 transcription at UAS1 and UAS2, but that the antagonistic interactions between these pathways involve different mechanisms at each site.


2009 ◽  
Vol 02 (01) ◽  
pp. 93-100 ◽  
Author(s):  
LING ZHU ◽  
TIMON CHENG-YI LIU ◽  
MIN WU ◽  
JIAN-QIN YUAN ◽  
TONG-SHENG CHEN

Photobiomodulation (PBM) is a modulation of monochromatic light or laser irradiation (LI) on biosystems. It is reviewed from the viewpoint of extraocular phototransduction in this paper. It was found that LI can induce extraocular phototransduction, and there may be an exact correspondence relationship of LI at different wavelengths and in different dose zones, and cellular signal transduction pathways. The signal transduction pathways can be classified into two types so that the Gs protein-mediated pathways belong to pathway 1, and the other pathways such as protein kinase Cs -mediated pathways and mitogen-activated protein kinase-mediated pathways belong to pathway 2. Almost all the present pathways found to mediate PBM belong to pathway 2, but there should be a pathway 1-mediated PBM. The previous studies were rather preliminary, and therefore further work should be done.


1998 ◽  
Vol 274 (1) ◽  
pp. C221-C228 ◽  
Author(s):  
Scot R. Kimball ◽  
Rick L. Horetsky ◽  
Leonard S. Jefferson

The phosphorylation states of three proteins implicated in the action of insulin on translation were investigated, i.e., 70-kDa ribosomal protein S6 kinase (p70 S6k ), eukaryotic initiation factor (eIF) 4E, and the eIF-4E binding protein 4E-BP1. Addition of insulin caused a stimulation of protein synthesis in L6 myoblasts in culture, an effect that was blocked by inhibitors of phosphatidylinositide-3-OH kinase (wortmannin), p70 S6k (rapamycin), and mitogen-activated protein kinase (MAP kinase) kinase (PD-98059). The stimulation of protein synthesis was accompanied by increased phosphorylation of p70 S6k , an effect that was blocked by rapamycin and wortmannin but not PD-98059. Insulin caused dephosphorylation of eIF-4E, an effect that appeared to be mediated by the p70 S6k pathway. Insulin also stimulated phosphorylation of 4E-BP1 as well as dissociation of the 4E-BP1 ⋅ eIF-4E complex. Both rapamycin and wortmannin completely blocked the insulin-induced changes in 4E-BP1 phosphorylation and association of 4E-BP1 and eIF-4E; PD-98059 had no effect on either parameter. Finally, insulin stimulated formation of the active eIF-4G ⋅ eIF-4E complex, an effect that was not prevented by any of the inhibitors. Overall, the results suggest that insulin stimulates protein synthesis in L6 myoblasts in part through utilization of both the p70 S6k and MAP kinase signal transduction pathways.


Sign in / Sign up

Export Citation Format

Share Document