scholarly journals Hepatitis C Virus Is Released via a Noncanonical Secretory Route

2016 ◽  
Vol 90 (23) ◽  
pp. 10558-10573 ◽  
Author(s):  
Karen Bayer ◽  
Carina Banning ◽  
Volker Bruss ◽  
Linda Wiltzer-Bach ◽  
Michael Schindler

ABSTRACTWe analyzed hepatitis C virus (HCV) morphogenesis using viral genomes encoding a mCherry-tagged E1 glycoprotein. HCV-E1-mCherry polyprotein expression, intracellular localization, and replication kinetics were comparable to those of untagged HCV, and E1-mCherry-tagged viral particles were assembled and released into cell culture supernatants. Expression and localization of structural E1 and nonstructural NS5A followed a temporospatial pattern with a succinct decrease in the number of replication complexes and the appearance of E1-mCherry punctae. Interaction of the structural proteins E1, Core, and E2 increased at E1-mCherry punctae in a time-dependent manner, indicating that E1-mCherry punctae represent assembled or assembling virions. E1-mCherry did not colocalize with Golgi markers. Furthermore, the bulk of viral glycoproteins within released particles revealed an EndoH-sensitive glycosylation pattern, indicating an absence of viral glycoprotein processing by the Golgi apparatus. In contrast, HCV-E1-mCherry trafficked with Rab9-positive compartments and inhibition of endosomes specifically suppressed HCV release. Our data suggest that assembled HCV particles are released via a noncanonical secretory route involving the endosomal compartment.IMPORTANCEThe goal of this study was to shed light on the poorly understood trafficking and release routes of hepatitis C virus (HCV). For this, we generated novel HCV genomes which resulted in the production of fluorescently labeled viral particles. We used live-cell microscopy and other imaging techniques to follow up on the temporal dynamics of virus particle formation and trafficking in HCV-expressing liver cells. While viral particles and viral structural protein were found in endosomal compartments, no overlap of Golgi structures could be observed. Furthermore, biochemical and inhibitor-based experiments support a HCV release route which is distinguishable from canonical Golgi-mediated secretion. Since viruses hijack cellular pathways to generate viral progeny, our results point toward the possible existence of a not-yet-described cellular secretion route.

2007 ◽  
Vol 52 (2) ◽  
pp. 666-674 ◽  
Author(s):  
Yingjia Zhang ◽  
Peter Weady ◽  
Rohit Duggal ◽  
Weidong Hao

ABSTRACT A major obstacle in hepatitis C virus (HCV) research has been the lack of a permissive cell culture system that produces infectious viral particles. Significant breakthroughs have been achieved lately in establishing such culture systems. Yet to date, there are no reports of the applications of any of these systems in HCV drug screening. Here, we report the generation of two monocistronic, chimeric genotype 1 full-length HCV genome molecules. These molecules, C33J-Y835C-UBI and C33J-Y835C-FMDV2A, both contain the structural protein region from genotype 1 (subtype 1b, Con1) and the remaining region from the genotype 2a (JFH1) clone. Both contain the humanized Renilla luciferase reporter gene which is separated from the rest of the HCV open reading frame by two different cleavage sites. The viral RNAs replicated efficiently in transfected cells. Viral particles produced were infectious in naïve Huh7.5 cells, and the infectivity could be blocked by monoclonal antibody against a putative HCV entry cofactor, CD81. A pilot high-throughput screen of 900 unknown compounds was executed by both the genotype 2a subgenomic replicon system and the infectious system. Thirty-one compounds were identified as hits by both systems, whereas 78 compounds were identified as hits only for the infectious system, suggesting that the infectious system is capable of identifying inhibitors targeting the viral structural proteins and steps involving them in the viral life cycle. The infectious HCV system developed here provides a useful and versatile tool which should greatly facilitate the identification of HCV inhibitors currently not identified by the subgenomic replicon system.


2016 ◽  
Vol 48 (11) ◽  
pp. e270-e270 ◽  
Author(s):  
In Soo Oh ◽  
Kathrin Textoris-Taube ◽  
Pil Soo Sung ◽  
Wonseok Kang ◽  
Xenia Gorny ◽  
...  

2007 ◽  
Vol 39 (10) ◽  
pp. 751-762 ◽  
Author(s):  
Qiongqiong HE ◽  
Ruixue CHENG ◽  
Zhuchu CHEN ◽  
Xuxian XIAO ◽  
Zhiqiang XIAO ◽  
...  

2005 ◽  
Vol 86 (11) ◽  
pp. 3075-3080 ◽  
Author(s):  
Paul Targett-Adams ◽  
John McLauchlan

Dicistronic, subgenomic hepatitis C virus (HCV) replicons were constructed containing sequences from JFH1, a genotype 2a strain, that also incorporated the firefly luciferase gene under the control of the HCV internal ribosome entry site element. Luciferase activity in Huh-7 cell extracts containing in vitro-transcribed subgenomic JFH1 RNA was monitored over a 72 h period to examine early stages of HCV replication in the absence of any selective pressure. Enzyme activities produced by the replicon were almost 200-fold greater than those generated from corresponding genotype 1b replicons and correlated with an accumulation of NS5A protein and replicon RNA. Transient replication was sensitive to IFN treatment in a dose-dependent manner and, in addition to Huh-7 cells, the U2OS human osteosarcoma cell line supported efficient replication of the JFH1 replicon. Thus, this system based on JFH1 sequences offers improvements over prior genotype 1b replicons for quantitative measurement of viral RNA replication.


2015 ◽  
Vol 63 (3) ◽  
pp. 554-563 ◽  
Author(s):  
Sakura Akamatsu ◽  
C. Nelson Hayes ◽  
Hidenori Ochi ◽  
Takuro Uchida ◽  
Hiromi Kan ◽  
...  

Traffic ◽  
2008 ◽  
Vol 9 (8) ◽  
pp. 1268-1282 ◽  
Author(s):  
Steeve Boulant ◽  
Mark W. Douglas ◽  
Laura Moody ◽  
Agata Budkowska ◽  
Paul Targett-Adams ◽  
...  

Author(s):  
Ashfaq Ur Rehman ◽  
Guodong Zheng ◽  
Bozitao Zhong ◽  
Duan Ni ◽  
Jia-Yi Li ◽  
...  

Hepatitis C virus (HCV) is a notorious member of the enveloped, positive-strand RNA flavivirus family. Non-structural protein 5A (NS5A) plays a key role in HCV replication and assembly. NS5A is...


2018 ◽  
Vol 93 (1) ◽  
Author(s):  
Dong-Rong Yi ◽  
Ni An ◽  
Zhen-Long Liu ◽  
Feng-Wen Xu ◽  
Kavita Raniga ◽  
...  

ABSTRACTType I interferon (IFN) inhibits viruses by inducing the expression of antiviral proteins. The IFN-induced myxovirus resistance B (MxB) protein has been reported to inhibit a limited number of viruses, including HIV-1 and herpesviruses, but its antiviral coverage remains to be explored further. Here we show that MxB interferes with RNA replication of hepatitis C virus (HCV) and significantly inhibits viral replication in a cyclophilin A (CypA)-dependent manner. Our data further show that MxB interacts with the HCV protein NS5A, thereby impairing NS5A interaction with CypA and NS5A localization to the endoplasmic reticulum, two events essential for HCV RNA replication. Interestingly, we found that MxB significantly inhibits two additional CypA-dependent viruses of theFlaviviridaefamily, namely, Japanese encephalitis virus and dengue virus, suggesting a potential link between virus dependence on CypA and virus susceptibility to MxB inhibition. Collectively, these data have identified MxB as a key factor behind IFN-mediated suppression of HCV infection, and they suggest that other CypA-dependent viruses may also be subjected to MxB restriction.IMPORTANCEViruses of theFlaviviridaefamily cause major illness and death around the world and thus pose a great threat to human health. Here we show that IFN-inducible MxB restricts several members of theFlaviviridae, including HCV, Japanese encephalitis virus, and dengue virus. This finding not only suggests an active role of MxB in combating these major pathogenic human viruses but also significantly expands the antiviral spectrum of MxB. Our study further strengthens the link between virus dependence on CypA and susceptibility to MxB restriction and also suggests that MxB may employ a common mechanism to inhibit different viruses. Elucidating the antiviral functions of MxB advances our understanding of IFN-mediated host antiviral defense and may open new avenues to the development of novel antiviral therapeutics.


Sign in / Sign up

Export Citation Format

Share Document