scholarly journals The Frequency of Vaccine-Induced T-Cell Responses Does Not Predict the Rate of Acquisition after Repeated Intrarectal SIVmac239 Challenges inMamu-B*08+Rhesus Macaques

2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Mauricio A. Martins ◽  
Lucas Gonzalez-Nieto ◽  
Young C. Shin ◽  
Aline Domingues ◽  
Martin J. Gutman ◽  
...  

ABSTRACTApproximately 50% of rhesus macaques (RMs) expressing the major histocompatibility complex class I (MHC-I) alleleMamu-B*08spontaneously control chronic-phase viremia after infection with the pathogenic simian immunodeficiency virus mac239 (SIVmac239) clone. CD8+T-cell responses in these animals are focused on immunodominant Mamu-B*08-restricted SIV epitopes in Vif and Nef, and prophylactic vaccination with these epitopes increases the incidence of elite control in SIVmac239-infectedMamu-B*08-positive (Mamu-B*08+) RMs. Here we evaluated if robust vaccine-elicited CD8+T-cell responses against Vif and Nef can prevent systemic infection inMamu-B*08+RMs following mucosal SIV challenges. TenMamu-B*08+RMs were vaccinated with a heterologous prime/boost/boost regimen encoding Vif and Nef, while six sham-vaccinated MHC-I-matched RMs served as the controls for this experiment. Vaccine-induced CD8+T cells against Mamu-B*08-restricted SIV epitopes reached high frequencies in blood but were present at lower levels in lymph node and gut biopsy specimens. Following repeated intrarectal challenges with SIVmac239, all control RMs became infected by the sixth SIV exposure. By comparison, four vaccinees were still uninfected after six challenges, and three of them remained aviremic after 3 or 4 additional challenges. The rate of SIV acquisition in the vaccinees was numerically lower (albeit not statistically significantly) than that in the controls. However, peak viremia was significantly reduced in infected vaccinees compared to control animals. We found no T-cell markers that distinguished vaccinees that acquired SIV infection from those that did not. Additional studies will be needed to validate these findings and determine if cellular immunity can be harnessed to prevent the establishment of productive immunodeficiency virus infection.IMPORTANCEIt is generally accepted that the antiviral effects of vaccine-induced classical CD8+T-cell responses against human immunodeficiency virus (HIV) are limited to partial reductions in viremia after the establishment of productive infection. Here we show that rhesus macaques (RMs) vaccinated with Vif and Nef acquired simian immunodeficiency virus (SIV) infection at a lower (albeit not statistically significant) rate than control RMs following repeated intrarectal challenges with a pathogenic SIV clone. All animals in the present experiment expressed the elite control-associated major histocompatibility complex class I (MHC-I) molecule Mamu-B*08 that binds immunodominant epitopes in Vif and Nef. Though preliminary, these results provide tantalizing evidence that the protective efficacy of vaccine-elicited CD8+T cells may be greater than previously thought. Future studies should examine if vaccine-induced cellular immunity can prevent systemic viral replication in RMs that do not express MHC-I alleles associated with elite control of SIV infection.


2022 ◽  
Vol 12 ◽  
Author(s):  
Richèl J. C. Bilderbeek ◽  
Maksim V. Baranov ◽  
Geert van den Bogaart ◽  
Frans Bianchi

Cytolytic T cell responses are predicted to be biased towards membrane proteins. The peptide-binding grooves of most alleles of histocompatibility complex class I (MHC-I) are relatively hydrophobic, therefore peptide fragments derived from human transmembrane helices (TMHs) are predicted to be presented more often as would be expected based on their abundance in the proteome. However, the physiological reason of why membrane proteins might be over-presented is unclear. In this study, we show that the predicted over-presentation of TMH-derived peptides is general, as it is predicted for bacteria and viruses and for both MHC-I and MHC-II, and confirmed by re-analysis of epitope databases. Moreover, we show that TMHs are evolutionarily more conserved, because single nucleotide polymorphisms (SNPs) are present relatively less frequently in TMH-coding chromosomal regions compared to regions coding for extracellular and cytoplasmic protein regions. Thus, our findings suggest that both cytolytic and helper T cells are more tuned to respond to membrane proteins, because these are evolutionary more conserved. We speculate that TMHs are less prone to mutations that enable pathogens to evade T cell responses.



2021 ◽  
Author(s):  
Richel Bilderbeek ◽  
Maksim Baranov ◽  
Frans Bianchi ◽  
Geert van den Bogaart

Cytolytic T cell responses are predicted to be biased towards membrane proteins. The peptide-binding grooves of most haplotypes of histocompatibility complex class I (MHC-I) are relatively hydrophobic, therefor peptide fragments derived from human transmembrane helices (TMHs) are predicted to be presented more often as would be expected based on their abundance in the proteome. However, the physiological reason of why membrane proteins might be over-presented is unclear. In this study, we show that the over-presentation of TMH-derived peptides is general, as it is predicted for bacteria and viruses and for both MHC-I and MHC-II. Moreover, we show that TMHs are evolutionarily more conserved, because single nucleotide polymorphisms (SNPs) are present relatively less frequently in TMH-coding chromosomal regions compared to regions coding for extracellular and cytoplasmic protein regions. Thus, our findings suggest that both cytolytic and helper T cells respond more to membrane proteins, because these are evolutionary more conserved. We speculate that TMHs therefor are less prone to escape mutations that enable pathogens to evade T cell responses.



2000 ◽  
Vol 74 (19) ◽  
pp. 9144-9151 ◽  
Author(s):  
Michael R. Betts ◽  
Joseph P. Casazza ◽  
Brent A. Patterson ◽  
Shar Waldrop ◽  
Wendy Trigona ◽  
...  

ABSTRACT Recent studies of human immunodeficiency virus (HIV)-specific CD8+ T cells have focused on responses to single, usually HLA-A2-restricted epitopes as surrogate measures of the overall response to HIV. However, the assumption that a response to one epitope is representative of the total response is unconfirmed. Here we assess epitope immunodominance and HIV-specific CD8+ T-cell response complexity using cytokine flow cytometry to examine CD8+ T-cell responses in 11 HLA-A2+HIV+ individuals. Initial studies demonstrated that only 4 of 11 patients recognized the putative immunodominant HLA-A2-restricted p17 epitope SLYNTVATL, suggesting that the remaining subjects might lack significant HIV-specific CD8+ T-cell responses. However, five of six SLYNTVATL nonresponders recognized other HIV epitopes, and two of four SLYNTVATL responders had greater responses to HIV peptides restricted by other class I alleles. In several individuals, no HLA-A2-restricted epitopes were recognized, but CD8+ T-cell responses were detected to epitopes restricted by other HLA class I alleles. These data indicate that an individual's overall CD8+ T-cell response to HIV is not adequately represented by the response to a single epitope and that individual major histocompatibility complex class I alleles do not predict an immunodominant response restricted by that allele. Accurate quantification of total HIV-specific CD8+ T-cell responses will require assessment of the response to all possible epitopes.



2008 ◽  
Vol 82 (11) ◽  
pp. 5618-5630 ◽  
Author(s):  
Ronald S. Veazey ◽  
Paula M. Acierno ◽  
Kimberly J. McEvers ◽  
Susanne H. C. Baumeister ◽  
Gabriel J. Foster ◽  
...  

ABSTRACT Previously we have shown that CD8+ T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4+ T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8+ T-cell responses on the magnitude of the CD4+ T-cell depletion, we investigated the effect of CD8+ lymphocyte depletion during primary SIV infection on CD4+ T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8+ lymphocyte-depletion changed the dynamics of CD4+ T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4+ T cells were restored to baseline levels. These CD4+ T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8+ lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5+ CD45RA− CD4+ T cells in CD8+ lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4+ T cells were eliminated more efficiently in CD8+ lymphocyte-depleted animals. Also, CD8+ lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4+ T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8+ T-cell responses are absolutely critical to initiate at least partial control of SIV infection.



2007 ◽  
Vol 82 (2) ◽  
pp. 859-870 ◽  
Author(s):  
Juan P. Giraldo-Vela ◽  
Richard Rudersdorf ◽  
Chungwon Chung ◽  
Ying Qi ◽  
Lyle T. Wallace ◽  
...  

ABSTRACT The role of CD4+ T cells in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication is not well understood. Even though strong HIV- and SIV-specific CD4+ T-cell responses have been detected in individuals that control viral replication, major histocompatibility complex class II (MHC-II) molecules have not been definitively linked with slow disease progression. In a cohort of 196 SIVmac239-infected Indian rhesus macaques, a group of macaques controlled viral replication to less than 1,000 viral RNA copies/ml. These elite controllers (ECs) mounted a broad SIV-specific CD4+ T-cell response. Here, we describe five macaque MHC-II alleles (Mamu-DRB*w606, -DRB*w2104, -DRB1*0306, -DRB1*1003, and -DPB1*06) that restricted six SIV-specific CD4+ T-cell epitopes in ECs and report the first association between specific MHC-II alleles and elite control. Interestingly, the macaque MHC-II alleles, Mamu-DRB1*1003 and -DRB1*0306, were enriched in this EC group (P values of 0.02 and 0.05, respectively). Additionally, Mamu-B*17-positive SIV-infected rhesus macaques that also expressed these two MHC-II alleles had significantly lower viral loads than Mamu-B*17-positive animals that did not express Mamu-DRB1*1003 and -DRB1*0306 (P value of <0.0001). The study of MHC-II alleles in macaques that control viral replication could improve our understanding of the role of CD4+ T cells in suppressing HIV/SIV replication and further our understanding of HIV vaccine design.



2004 ◽  
Vol 78 (2) ◽  
pp. 841-854 ◽  
Author(s):  
Kristina Abel ◽  
Lisa La Franco-Scheuch ◽  
Tracy Rourke ◽  
Zhong-Min Ma ◽  
Veronique de Silva ◽  
...  

ABSTRACT Although gamma interferon (IFN-γ) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-γ-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-γ T-cell responses and nonspecific IFN-γ-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-γ mRNA levels and a high frequency of IFN-γ-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-γ mRNA levels and strong in vitro SIV-specific IFN-γ T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-γ mRNA levels but weak in vitro anti-SIV IFN-γ T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-γ mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3+ activated T cells. Thus, IFN-γ-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-γ-driven inflammation, but they did develop effective antiviral CD8+-T-cell responses.



2008 ◽  
Vol 82 (6) ◽  
pp. 3139-3146 ◽  
Author(s):  
M. Quinn DeGottardi ◽  
Anke Specht ◽  
Benjamin Metcalf ◽  
Amitinder Kaur ◽  
Frank Kirchhoff ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Nef downregulates HLA-A and -B molecules, but not HLA-C or -E molecules, based on amino acid differences in their cytoplasmic domains to simultaneously evade cytotoxic T lymphocyte (CTL) and natural killer cell surveillance. Rhesus macaques and sooty mangabeys express orthologues of HLA-A, -B, and -E, but not HLA-C, and many of these molecules have unique amino acid differences in their cytoplasmic tails. We found that these differences also resulted in differential downregulation by primary simian immunodeficiency virus (SIV) SIVsmm/mac and HIV-2 Nef alleles. Thus, selective major histocompatibility complex class I downregulation is a conserved mechanism of immune evasion for pathogenic SIV infection of rhesus macaques and nonpathogenic SIV infection of sooty mangabeys.



2008 ◽  
Vol 82 (19) ◽  
pp. 9629-9638 ◽  
Author(s):  
Monica Vaccari ◽  
Joseph Mattapallil ◽  
Kaimei Song ◽  
Wen-Po Tsai ◽  
Anna Hryniewicz ◽  
...  

ABSTRACT Adaptive CD4+ and CD8+ T-cell responses have been associated with control of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication. Here, we have designed a study with Indian rhesus macaques to more directly assess the role of CD8 SIV-specific responses in control of viral replication. Macaques were immunized with a DNA prime-modified vaccinia virus Ankara (MVA)-SIV boost regimen under normal conditions or under conditions of antibody-induced CD4+ T-cell deficiency. Depletion of CD4+ cells was performed in the immunized macaques at the peak of SIV-specific CD4+ T-cell responses following the DNA prime dose. A group of naïve macaques was also treated with the anti-CD4 depleting antibody as a control, and an additional group of macaques immunized under normal conditions was depleted of CD8+ T cells prior to challenge exposure to SIVmac251. Analysis of the quality and quantity of vaccine-induced CD8+ T cells demonstrated that SIV-specific CD8+ T cells generated under conditions of CD4+ T-cell deficiency expressed low levels of Bcl-2 and interleukin-2 (IL-2), and plasma virus levels increased over time. Depletion of CD8+ T cells prior to challenge exposure abrogated vaccine-induced protection as previously shown. These data support the notion that adaptive CD4+ T cells are critical for the generation of effective CD8+ T-cell responses to SIV that, in turn, contribute to protection from AIDS. Importantly, they also suggest that long-term protection from disease will be afforded only by T-cell vaccines for HIV that provide a balanced induction of CD4+ and CD8+ T-cell responses and protect against early depletion of CD4+ T cells postinfection.



2007 ◽  
Vol 81 (21) ◽  
pp. 11703-11712 ◽  
Author(s):  
Jonah B. Sacha ◽  
Chungwon Chung ◽  
Jason Reed ◽  
Anna K. Jonas ◽  
Alexander T. Bean ◽  
...  

ABSTRACT Effective, vaccine-induced CD8+ T-cell responses should recognize infected cells early enough to prevent production of progeny virions. We have recently shown that Gag-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells at 2 h postinfection, whereas Env-specific CD8+ T cells do not recognize infected cells until much later in infection. However, it remains unknown when other proteins present in the viral particle are presented to CD8+ T cells after infection. To address this issue, we explored CD8+ T-cell recognition of epitopes derived from two other relatively large virion proteins, Pol and Nef. Surprisingly, infected cells efficiently presented CD8+ T-cell epitopes from virion-derived Pol proteins within 2 h of infection. In contrast, Nef-specific CD8+ T cells did not recognize infected cells until 12 h postinfection. Additionally, we show that SIVmac239 Nef downregulated surface major histocompatibility complex class I (MHC-I) molecules beginning at 12 h postinfection, concomitant with presentation of Nef-derived CD8+ T-cell epitopes. Finally, Pol-specific CD8+ T cells eliminated infected cells as early as 6 h postinfection, well before MHC-I downregulation, suggesting a previously underappreciated antiviral role for Pol-specific CD8+ T cells.



2005 ◽  
Vol 79 (2) ◽  
pp. 684-695 ◽  
Author(s):  
Miranda Z. Smith ◽  
C. Jane Dale ◽  
Robert De Rose ◽  
Ivan Stratov ◽  
Caroline S. Fernandez ◽  
...  

ABSTRACT Successful human immunodeficiency virus (HIV) vaccines will need to induce effective T-cell immunity. We studied immunodominant simian immunodeficiency virus (SIV) Gag-specific T-cell responses and their restricting major histocompatibility complex (MHC) class I alleles in pigtail macaques (Macaca nemestrina), an increasingly common primate model for the study of HIV infection of humans. CD8+ T-cell responses to an SIV epitope, Gag164 - 172KP9, were present in at least 15 of 36 outbred pigtail macaques. The immunodominant KP9-specific response accounted for the majority (mean, 63%) of the SIV Gag response. Sequencing from six macaques identified 7 new Mane-A and 13 new Mane-B MHC class I alleles. One new allele, Mane-A*10, was common to four macaques that responded to the KP9 epitope. We adapted reference strand-mediated conformational analysis (RSCA) to MHC class I genotype M. nemestrina. Mane-A*10 was detected in macaques presenting KP9 studied by RSCA but was absent from non-KP9-presenting macaques. Expressed on class I-deficient cells, Mane-A*10, but not other pigtail macaque MHC class I molecules, efficiently presented KP9 to responder T cells, confirming that Mane-A*10 restricts the KP9 epitope. Importantly, naïve pigtail macaques infected with SIVmac251 that respond to KP9 had significantly reduced plasma SIV viral levels (log10 0.87 copies/ml; P = 0.025) compared to those of macaques not responding to KP9. The identification of this common M. nemestrina MHC class I allele restricting a functionally important immunodominant SIV Gag epitope establishes a basis for studying CD8+ T-cell responses against AIDS in an important, widely available nonhuman primate species.



Sign in / Sign up

Export Citation Format

Share Document