Human herpesvirus 6A U4 inhibits proteasomal degradation of amyloid precursor protein

2021 ◽  
Author(s):  
Tian Tang ◽  
Junli Jia ◽  
Emanuela Garbarino ◽  
Luyao Chen ◽  
Jingjing Ma ◽  
...  

Human herpesvirus 6 (HHV-6) belongs to the betaherpesvirus subfamily and is divided into two distinct species, HHV-6A and HHV-6B. HHV-6 can infect nerve cells and is associated with a variety of nervous system diseases. Recently, the association of HHV-6A infection with Alzheimer's disease (AD) has been suggested. The main pathological phenomena of AD are the accumulation of β-amyloid (Aβ), neurofibrillary tangles, and neuroinflammation, however, the specific molecular mechanism of pathogenesis of AD is not fully clear. In this study, we focused on the effect of HHV-6A U4 gene function on Aβ expression. Co-expression of HHV-6A U4 with APP resulted in inhibition of ubiquitin-mediated proteasomal degradation of amyloid precursor protein (APP). Consequently, accumulation of β-amyloid peptide (Aβ), insoluble neurofibrillary tangles, and loss of neural cells may occur. Immunoprecipitation coupled to mass spectrometry (IP-MS) showed that HHV-6A U4 protein interacts with E3 ubiquitin ligase composed of DDB1 and Cullin 4B which is also responsible for APP degradation. We hypothesize that HHV-6A U4 protein competes with APP for binding to E3 ubiquitin ligase, resulting in inhibition of APP ubiquitin modification and clearance. Finally, this is leading to the increase of APP expression and Aβ deposition, which is the hallmark of AD. These findings provide novel evidence for the etiological hypothesis of AD that can contribute to the further analysis of HHV-6A role in AD. IMPORTANCE The association of HHV-6A infection with Alzheimer’s disease has attracted increasing attention, although its role and molecular mechanism remain to be established. Our results here indicate that HHV-6A U4 inhibits APP (amyloid precursor protein) degradation. U4 protein interacts with CRLs (Cullin-RING E3 ubiquitin-protein ligases) which is also responsible for APP degradation. We propose a model that U4 competitively binds to CRLs with APP, resulting in APP accumulation and Aβ generation. Our findings provide new insights into the etiological hypothesis of HHV-6A in AD that can help further analyses.

2019 ◽  
Author(s):  
Tatiana Burrinha ◽  
Ricardo Gomes ◽  
Ana Paula Terrasso ◽  
Cláudia Guimas Almeida

AbstractAging increases the risk of Alzheimer’s disease (AD). During normal aging synapses decline and β-Amyloid (Aβ) accumulates. An Aβ defective clearance with aging is postulated as responsible for Aβ accumulation, although a role for increased Aβ production with aging can also lead to Aβ accumulation. To test this hypothesis, we established a long-term culture of primary mouse neurons that mimics neuronal aging (lysosomal lipofuscin accumulation and synapse decline). Intracellular endogenous Aβ42 accumulated in aged neurites due to increased amyloid-precursor protein (APP) processing. We show that APP processing is up-regulated by a specific age-dependent increase in APP endocytosis. Endocytosed APP accumulated in early endosomes that, in turn were found augmented in aged neurites. APP processing and early endosomes up-regulation was recapitulated in vivo. Finally, we found that inhibition of Aβ production reduced the decline in synapses in aged neurons. We propose that potentiation of APP endocytosis by neuronal aging increases Aβ production, which contributes to aging-dependent decline in synapses.SummaryHow aging increases the risk of Alzheimer’s disease is not clear. We show that normal neuronal aging increases the intracellular production of β-amyloid, due to an upregulation of the amyloid precursor protein endocytosis. Importantly, increased Aβ production contributes to the aging-dependent synapse loss.


1997 ◽  
Vol 3 (3) ◽  
pp. 328-332 ◽  
Author(s):  
A. Weidemann ◽  
K. Paliga ◽  
U. Dürrwang ◽  
C. Czech ◽  
G. Evin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document