scholarly journals The NS2 Protein of Human Respiratory Syncytial Virus Suppresses the Cytotoxic T-Cell Response as a Consequence of Suppressing the Type I Interferon Response

2006 ◽  
Vol 80 (20) ◽  
pp. 10286-10286
Author(s):  
Alexander Kotelkin ◽  
Igor M. Belyakov ◽  
Lijuan Yang ◽  
Jay A. Berzofsky ◽  
Peter L. Collins ◽  
...  
2006 ◽  
Vol 80 (12) ◽  
pp. 5958-5967 ◽  
Author(s):  
Alexander Kotelkin ◽  
Igor M. Belyakov ◽  
Lijuan Yang ◽  
Jay A. Berzofsky ◽  
Peter L. Collins ◽  
...  

ABSTRACT The NS1 and NS2 proteins of human respiratory syncytial virus (HRSV) have been shown to antagonize the type I interferon (IFN) response, an effect subject to host range constraints. We have now found that the HRSV NS2 protein strongly controls IFN induction in mouse cells in vitro, validating the use of the mouse model to study the consequences of these gene deletions on host immunity. We evaluated the effects of deleting the NS1 and/or NS2 gene on the induction of HRSV-specific pulmonary cytotoxic T lymphocytes (CTL) in BALB/c and 129S6 mice in response to intranasal infection with HRSV lacking the NS1 and/or NS2 gene and subsequent challenge with wild-type (wt) HRSV. In mice infected with HRSV lacking the NS2 gene (ΔNS2) or lacking the NS2 gene in combination with the NS1 gene (ΔNS1/2 HRSV), the magnitude of the pulmonary CTL response was substantially elevated compared to that of mice infected with wt HRSV or the ΔNS1 mutant, whether measured by binding of CD8+ cells to an HRSV-specific major histocompatibility complex class I tetramer, by measurement of CD8+ cells secreting gamma interferon (IFN-γ) in response to specific in vitro stimulation, or by a standard chromium release cell-killing assay. In contrast, in STAT1 knockout mice, which lack responsiveness to type I IFN, the level of IFN-γ-secreting CD8+ cells was not significantly different for HRSV lacking the NS2 gene, suggesting that the increase in CTL observed in IFN-responsive mice is type I IFN dependent. Thus, the NS2 protein of HRSV suppresses the CTL component of the adaptive immune response, and this appears to be a consequence of its suppression of type I IFN.


1985 ◽  
Vol 56 (1) ◽  
pp. 55-59 ◽  
Author(s):  
C R Bangham ◽  
M J Cannon ◽  
D T Karzon ◽  
B A Askonas

2007 ◽  
Vol 179 (12) ◽  
pp. 8264-8273 ◽  
Author(s):  
Simone Vallbracht ◽  
Birthe Jessen ◽  
Sonja Mrusek ◽  
Anselm Enders ◽  
Peter L. Collins ◽  
...  

Author(s):  
Clyde Dapat ◽  
Satoru Kumaki ◽  
Hiroki Sakurai ◽  
Hidekazu Nishimura ◽  
Hannah Karen Mina Labayo ◽  
...  

Abstract Background The limited treatment options for children with severe respiratory syncytial virus (RSV) infection highlights the need for a comprehensive understanding of the host cellular response during infection. We aimed to identify host genes that are associated with severe RSV disease and to identify drugs that can be repurposed for the treatment of severe RSV infection. Methods We examined clinical data and blood samples from 37 hospitalized children (29 mild and 8 severe) with RSV infection. We tested RNA from blood samples using next-generation sequencing to profile global mRNA expression and identify cellular processes. Results Retractions, decreased breath sounds, and tachypnea were associated with disease severity. We observed upregulation of genes related to neutrophil, inflammatory response, blood coagulation, and downregulation of genes related to T cell response in children with severe RSV. Using network-based approach, 43 drugs were identified that are predicted to interact with the gene products of these differentially expressed genes. Conclusions These results suggest that the changes in the expression pattern in the innate and adaptive immune responses may be associated with RSV clinical severity. Compounds that target these cellular processes can be repositioned as candidate drugs in the treatment of severe RSV. Impact Neutrophil, inflammation, and blood coagulation genes are upregulated in children with severe RSV infection. Expression of T cell response genes are suppressed in cases of severe RSV. Genes identified in this study can contribute in understanding the pathogenesis of RSV disease severity. Drugs that target cellular processes associated with severe RSV can be repositioned as potential therapeutic options.


Sign in / Sign up

Export Citation Format

Share Document