scholarly journals Kaposi’s Sarcoma-Associated Herpesvirus Lytic Replication Is Independent of Anaphase-Promoting Complex Activity

2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Endrit Elbasani ◽  
Silvia Gramolelli ◽  
Thomas Günther ◽  
Ildar Gabaev ◽  
Adam Grundhoff ◽  
...  

ABSTRACT The anaphase-promoting complex, or cyclosome (APC/C), is a large E3 ubiquitin ligase composed of 14 subunits. The activity of APC/C oscillates during the cell cycle to ensure a timely transition through each phase by promoting the degradation of important cell cycle regulators. Of the human herpesviruses, cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) both impair the activity of APC/C during their lytic replication cycle through virus-encoded protein kinases. Here, we addressed whether the oncogenic Kaposi’s sarcoma-associated herpesvirus (KSHV) deregulates the activity of APC/C during the lytic replication cycle. To this end, we used the well-characterized iSLK.219 cell model of KSHV infection and established a new infection model of primary lymphatic endothelial cells (LECs) infected with a lytically replicating KSHV BAC16 mutant. In contrast to those of EBV and HCMV, the KSHV lytic cycle occurs while the APC/C is active. Moreover, interfering with the activity of APC/C did not lead to major changes in the production of infectious virus. We further investigated whether rereplication stress induced by the unscheduled activation of the APC/C-CDH1 complex affects the number and integrity of KSHV viral episomes. Deep sequencing of the viral episomes and host chromosomes in iSLK.219 cells revealed that, while distinct regions in the cellular chromosomes were severely affected by rereplication stress, the integrity of the viral episomes remained unaltered. IMPORTANCE DNA viruses have evolved complex strategies to gain control over the cell cycle. Several of them target APC/C, a key cellular machinery that controls the timely progression of the cell cycle, by either blocking or enhancing its activity. Here, we investigated the activity of APC/C during the lytic replication cycle of KSHV and found that, in contrast to that of KSHV's close relatives EBV and HCMV, KSHV lytic replication occurs while the APC/C is active. Perturbing APC/C activity by depleting a core protein or the adaptor proteins of the catalytic domain, and hence interfering with normal cell-cycle progression, did not affect virus replication. This suggests that KSHV has evolved to replicate independently of the activity of APC/C and in various cell cycle conditions.

2001 ◽  
Vol 75 (3) ◽  
pp. 1378-1386 ◽  
Author(s):  
Jeffrey Vieira ◽  
Patricia O'Hearn ◽  
Louise Kimball ◽  
Bala Chandran ◽  
Lawrence Corey

ABSTRACT The majority of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells identified in vivo contain latent KSHV, with lytic replication in only a few percent of cells, as is the case for the cells of Kaposi's sarcoma (KS) lesions. Factors that influence KSHV latent or lytic replication are not well defined. Because persons with KS are often immunosuppressed and susceptible to many infectious agents, including human cytomegalovirus (HCMV), we have investigated the potential for HCMV to influence the replication of KSHV. Important to this work was the construction of a recombinant KSHV, rKSHV.152, expressing the green fluorescent protein (GFP) andneo (conferring resistance to G418). The expression of GFP was a marker of KSHV infection in cells of both epithelial and endothelial origin. The rKSHV.152 virus was used to establish cells, including human fibroblasts (HF), containing only latent KSHV, as demonstrated by latency-associated nuclear antigen expression and Gardella gel analysis. HCMV infection of KSHV latently infected HF activated KSHV lytic replication with the production of infectious KSHV. Dual-color immunofluorescence detected both the KSHV lytic open reading frame 59 protein and the HCMV glycoprotein B in coinfected cells, and UV-inactivated HCMV did not activate the production of infectious KSHV-GFP. In addition, HCMV coinfection increased the production of KSHV from endothelial cells and activated lytic cycle gene expression in keratinocytes. These data demonstrate that HCMV can activate KSHV lytic replication and suggest that HCMV could influence KSHV pathogenesis.


2015 ◽  
Vol 90 (4) ◽  
pp. 1741-1756 ◽  
Author(s):  
Jian-jun Wu ◽  
Denis Avey ◽  
Wenwei Li ◽  
Joseph Gillen ◽  
Bishi Fu ◽  
...  

ABSTRACTWe recently showed that the interaction between Kaposi's sarcoma-associated herpesvirus (KSHV) tegument proteins ORF33 and ORF45 is crucial for progeny virion production, but the exact functions of KSHV ORF33 during lytic replication were unknown (J. Gillen, W. Li, Q. Liang, D. Avey, J. Wu, F. Wu, J. Myoung, and F. Zhu, J Virol89:4918–4931, 2015,http://dx.doi.org/10.1128/JVI.02925-14). Therefore, here we investigated the relationship between ORF33 and ORF38, whose counterparts in both alpha- and betaherpesviruses interact with each other. Using specific monoclonal antibodies, we found that both proteins are expressed during the late lytic cycle with similar kinetics and that both are present in mature virions as components of the tegument. Furthermore, we confirmed that ORF33 interacts with ORF38. Interestingly, we observed that ORF33 tightly associates with the capsid, whereas ORF38 associates with the envelope. We generated ORF33-null, ORF38-null, and double-null mutants and found that these mutants apparently have identical phenotypes: the mutations caused no apparent effect on viral gene expression but reduced the yield of progeny virion by about 10-fold. The progeny virions also lack certain virion component proteins, including ORF45. During viral lytic replication, the virions associate with cytoplasmic vesicles. We also observed that ORF38 associates with the membranes of vesicles and colocalizes with the Golgi membrane or early endosome membrane. Further analyses of ORF33/ORF38 mutants revealed the reduced production of virion-containing vesicles, suggesting that ORF33 and ORF38 are involved in the transport of newly assembled viral particles into cytoplasmic vesicles, a process important for viral maturation and egress.IMPORTANCEHerpesvirus assembly is an essential step in virus propagation that leads to the generation of progeny virions. It is a complicated process that depends on the delicate regulation of interactions among virion proteins. We previously revealed an essential role of ORF45-ORF33 binding for virus assembly. Here, we report that ORF33 and its binding partner, ORF38, are required for infectious virus production due to their important role in the tegumentation process. Moreover, we found that both ORF33 and ORF38 are involved in the transportation of virions through vesicles during maturation and egress. Our results provide new insights into the important roles of ORF33 and ORF38 during viral assembly, a process critical for virus propagation that is intimately linked to KSHV pathobiology.


2021 ◽  
Vol 95 (10) ◽  
Author(s):  
Atsuko Sugimoto ◽  
Yuichi Abe ◽  
Tadashi Watanabe ◽  
Kohei Hosokawa ◽  
Jun Adachi ◽  
...  

ABSTRACT During Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic replication, host cell functions, including protein expression and posttranslational modification pathways, are dysregulated by KSHV to promote virus production. Here, we attempted to identify key proteins for KSHV lytic replication by profiling protein expression in the latent and lytic phases using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteomic analysis, immunoblotting, and quantitative PCR demonstrated that antigen F (HLA-F) adjacent transcript 10 (FAT10) and UBE1L2 (also known as ubiquitin-like modifier-activating enzyme 6 [UBA6]) were upregulated during lytic replication. FAT10 is a ubiquitin-like protein (UBL). UBE1L2 is the FAT10-activating enzyme (E1), which is essential for FAT10 modification (FAT10ylation). FAT10ylated proteins were immediately expressed after lytic induction and increased over time during lytic replication. Knockout of UBE1L2 suppressed KSHV production but not KSHV DNA synthesis. In order to isolate FAT10ylated proteins during KSHV lytic replication, we conducted immunoprecipitation using anti-FAT10 antibody and nickel-nitrilotriacetic acid (Ni-NTA) chromatography of exogenously expressed His-tagged FAT10 from cells undergoing latent or lytic replication. LC-MS/MS was performed to identify FAT10ylated proteins. We identified KSHV ORF59 and ORF61 as FAT10ylation substrates. Our study revealed that the UBE1L2-FAT10 system is upregulated during KSHV lytic replication, and it contributes to viral propagation. IMPORTANCE Ubiquitin and UBL posttranslational modifications, including FAT10, are utilized and dysregulated by viruses for achievement of effective infection and virion production. The UBE1L2-FAT10 system catalyzes FAT10ylation, where one or more FAT10 molecules are covalently linked to a substrate. FAT10ylation is catalyzed by the sequential actions of E1 (activation enzyme), E2 (conjugation enzyme), and E3 (ligase) enzymes. The E1 enzyme for FAT10ylation is UBE1L2, which activates FAT10 and transfers it to E2/USE1. FAT10ylation regulates the cell cycle, interferon (IFN) signaling, and protein degradation; however, its primary biological function remains unknown. Here, we revealed that KSHV lytic replication induces UBE1L2 expression and production of FAT10ylated proteins, including KSHV lytic proteins. Moreover, UBE1L2 knockout suppressed virus production during the lytic cycle. This is the first report demonstrating the contribution of the UBE1L2-FAT10 system to KSHV lytic replication. Our findings provide insight into the physiological function(s) of novel posttranslational modifications in KSHV lytic replication.


2006 ◽  
Vol 87 (3) ◽  
pp. 519-529 ◽  
Author(s):  
Benjaman A. Bryan ◽  
Ossie F. Dyson ◽  
Shaw M. Akula

Kaposi's sarcoma-associated herpesvirus (KSHV) is the latest addition to the long list of human herpesviruses. Reactivation of latent herpesvirus infections is still a mystery. It was demonstrated recently that the phorbol ester TPA was efficient in inducing a reactivation of KSHV infection in the S phase of the cell cycle. In the present study, flow cytometry-sorted, TPA-induced, KSHV-infected haematopoietic cells (BCBL-1) were used to analyse the expression profiles of cancer-related cellular genes in the S phase of the cell cycle compared with the G0/1 phase by using microarrays. Overall, the S phase of the cell cycle seems to provide KSHV with an apt environment for a productive lytic cycle of infection. The apt conditions include cellular signalling that promotes survivability, DNA replication and lipid metabolism, while blocking cell-cycle progression to M phase. Some of the important genes that were overexpressed during the S phase of the cell cycle compared with the G0/1 phase of TPA-induced BCBL-1 cells are v-myb myeloblastosis (MYBL2), protein kinase-membrane associated tyrosine/threonine 1 (PKMYT1), ribonucleotide reductase M1 polypeptide (RRM1) and peroxisome proliferator-activated receptors delta (PPARD). Inhibition of PKMYT1 expression by the use of specific short interfering RNAs significantly lowered the TPA-induced KSHV lytic cycle of infection. The significance of these and other genes in the reactivation of KSHV is discussed in the following report. Taken together, a flow cytometry–microarray-based method to study the cellular conditions critical for the reactivation of KSHV infection is reported here for the first time.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 711 ◽  
Author(s):  
Matthew Butnaru ◽  
Marta Maria Gaglia

Kaposi’s sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi’s sarcoma and other aggressive AIDS-associated malignancies, encodes over 90 genes, most of which are expressed only during the lytic replication cycle. The role of many of the KSHV lytic proteins in the KSHV replication cycle remains unknown, and many proteins are annotated based on known functions of homologs in other herpesviruses. Here we investigate the role of the previously uncharacterized KSHV lytic protein ORF42, a presumed tegument protein. We find that ORF42 is dispensable for reactivation from latency but is required for efficient production of viral particles. Like its alpha- and beta-herpesviral homologs, ORF42 is a late protein that accumulates in the viral particles. However, unlike its homologs, ORF42 appears to be required for efficient expression of at least some viral proteins and may potentiate post-transcriptional stages of gene expression. These results demonstrate that ORF42 has an important role in KSHV replication and may contribute to shaping viral gene expression.


2009 ◽  
Vol 83 (9) ◽  
pp. 4695-4699 ◽  
Author(s):  
Richard Wells ◽  
Laurence Stensland ◽  
Jeffrey Vieira

ABSTRACT Human cytomegalovirus (HCMV) infection of a cell containing latent Kaposi's sarcoma-associated herpesvirus (KSHV) results in the activation of KSHV lytic replication and the production of infectious virus. In this study, we examined the HCMV genes identified as having a role in the activation of HCMV early genes for their ability to activate KSHV lytic replication. It was found that the UL112-113 locus was able to activate the complete KSHV lytic cycle, while the UL122-123 locus, encoding the IE1 and IE2 proteins, known to be strong transactivators, did not.


2016 ◽  
Vol 90 (19) ◽  
pp. 8822-8841 ◽  
Author(s):  
Arunava Roy ◽  
Dipanjan Dutta ◽  
Jawed Iqbal ◽  
Gina Pisano ◽  
Olsi Gjyshi ◽  
...  

ABSTRACTIFI16 (interferon gamma-inducible protein 16) recognizes nuclear episomal herpesvirus (Kaposi's sarcoma-associated herpesvirus [KSHV], Epstein-Barr virus [EBV], and herpes simplex virus 1 [HSV-1]) genomes and induces the inflammasome and interferon beta responses. It also acts as a lytic replication restriction factor and inhibits viral DNA replication (human cytomegalovirus [HCMV] and human papillomavirus [HPV]) and transcription (HSV-1, HCMV, and HPV) through epigenetic modifications of the viral genomes. To date, the role of IFI16 in the biology of latent viruses is not known. Here, we demonstrate that knockdown of IFI16 in the latently KSHV-infected B-lymphoma BCBL-1 and BC-3 cell lines results in lytic reactivation and increases in levels of KSHV lytic transcripts, proteins, and viral genome replication. Similar results were also observed during KSHV lytic cycle induction in TREX-BCBL-1 cells with the doxycycline-inducible lytic cycle switch replication and transcription activator (RTA) gene. Overexpression of IFI16 reduced lytic gene induction by the chemical agent 12-O-tetradecoylphorbol-13-acetate (TPA). IFI16 protein levels were significantly reduced or absent in TPA- or doxycycline-induced cells expressing lytic KSHV proteins. IFI16 is polyubiquitinated and degraded via the proteasomal pathway. The degradation of IFI16 was absent in phosphonoacetic acid-treated cells, which blocks KSHV DNA replication and, consequently, late lytic gene expression. Chromatin immunoprecipitation assays of BCBL-1 and BC-3 cells demonstrated that IFI16 binds to KSHV gene promoters. Uninfected epithelial SLK and osteosarcoma U2OS cells transfected with KSHV luciferase promoter constructs confirmed that IFI16 functions as a transcriptional repressor. These results reveal that KSHV utilizes the innate immune nuclear DNA sensor IFI16 to maintain its latency and repression of lytic transcripts, and a late lytic KSHV gene product(s) targets IFI16 for degradation during lytic reactivation.IMPORTANCELike all herpesviruses, latency is an integral part of the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent for many human cancers. Herpesviruses utilize viral and host factors to successfully evade the host immune system to maintain latency. Reactivation is a complex event where the latent episomal viral genome springs back to active transcription of lytic cycle genes. Our studies reveal that KSHV has evolved to utilize the innate immune sensor IFI16 to keep lytic cycle transcription in dormancy. We demonstrate that IFI16 binds to the lytic gene promoter, acts as a transcriptional repressor, and thereby helps to maintain latency. We also discovered that during the late stage of lytic replication, KSHV selectively degrades IFI16, thus relieving transcriptional repression. This is the first report to demonstrate the role of IFI16 in latency maintenance of a herpesvirus, and further understanding will lead to the development of strategies to eliminate latent infection.


2001 ◽  
Vol 75 (4) ◽  
pp. 1798-1807 ◽  
Author(s):  
Joseph Jeong ◽  
James Papin ◽  
Dirk Dittmer

ABSTRACT Similar to that of other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) lytic replication destroys the host cell, while the virus can persist in a latent state in synchrony with the host. During latency only a few genes are transcribed, and the question becomes one of what determines latent versus lytic gene expression. Here we undertake a detailed analysis of the latency-associated nuclear antigen (LANA [orf73]) promoter (LANAp). We characterized a minimal region that is necessary and sufficient to maintain high-level transcription in all tissues tested, including primary endothelial cells and B cells, which are the suspected natural host for KSHV. We show that in transient-transfection assays LANAp mimics the expression pattern observed for the authentic promoter in the context of the KSHV episome. Unlike other KSHV promoters tested thus far, LANAp is not affected by tetradecanoyl phorbol acetate or viral lytic cycle functions. It is, however, subject to control by LANA itself and cellular regulatory factors, such as p53. This is in contrast to the K14/vGCR (orf74) promoter, which overlaps LANAp and directs transcription on the opposite strand. We isolated a minimal cis-regulatory region sufficient for K14/vGCR promoter activity and show that it, too, mimics the regulation observed for the authentic viral promoter. In particular, we demonstrate that its activity is absolutely dependent on the immediate-early transactivator orf50, the KSHV homolog of the Epstein-Barr virus Rta transactivator.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Eric S. Pringle ◽  
Carolyn-Ann Robinson ◽  
Craig McCormick

ABSTRACT Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism. In nutrient-rich environments, mTORC1 kinase activity stimulates protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes multiple proteins that stimulate mTORC1 activity or subvert autophagy, but precise roles for mTORC1 in different stages of KSHV infection remain incompletely understood. Here, we report that during latent and lytic stages of KSHV infection, chemical inhibition of mTORC1 caused eukaryotic initiation factor 4F (eIF4F) disassembly and diminished global protein synthesis, which indicated that mTORC1-mediated control of translation initiation was largely intact. We observed that mTORC1 was required for synthesis of the replication and transcription activator (RTA) lytic switch protein and reactivation from latency, but once early lytic gene expression had begun, mTORC1 was not required for genome replication, late gene expression, or the release of infectious progeny. Moreover, mTORC1 control of autophagy was dysregulated during lytic replication, whereby chemical inhibition of mTORC1 prevented ULK1 phosphorylation but did not affect autophagosome formation or rates of autophagic flux. Together, these findings suggest that mTORC1 is dispensable for viral protein synthesis and viral control of autophagy during lytic infection and that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication. IMPORTANCE All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.


Sign in / Sign up

Export Citation Format

Share Document