scholarly journals Inhibition of Human Immunodeficiency Virus Type 1 Infection of Human CD4+ T Cells by Microbial HSP70 and the Peptide Epitope 407-426

2007 ◽  
Vol 81 (7) ◽  
pp. 3354-3360 ◽  
Author(s):  
Kaboutar Babaahmady ◽  
Wulf Oehlmann ◽  
Mahavir Singh ◽  
Thomas Lehner

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) virions contain heat shock proteins (HSP), but these proteins have received limited attention. The objectives of this study were to establish if the microbial 70-kDa HSP exerts an inhibitory effect on the HIV-1 infection of human CD4+ T cells, to identify an inhibitory peptide epitope within the sequence of HSP70, and to evaluate the kinetic features of any inhibitory activity. The results of these studies suggest that microbial HSP70 exerts dose-dependent inhibition on CCR5 (R5) strains of clades B, C, and D of HIV-1 infecting human CD4+ T cells. The site of the HIV-1-inhibitory function was identified within the C-terminal peptide binding domain of HSP70, and the function is expressed by the peptide epitope comprising amino acids 407 to 426. The mechanism of inhibition of HIV-1 infectivity by HSP70 is blocking of the CCR5 coreceptors directly and indirectly by inducing CC chemokines and APOBEC3G. The inhibitory effect of HSP70, its C-terminal fragment, or peptide 407-426 may make HSP70 useful as a microbicidal agent. A potentiating noncognate inhibition of HIV-1 infectivity by combined treatment with HSP70 and monoclonal or polyclonal antibody to CCR5 was demonstrated. This novel strategy may be utilized in therapeutic immunization against HIV-1 infection.

2002 ◽  
Vol 46 (4) ◽  
pp. 982-990 ◽  
Author(s):  
Jan Münch ◽  
Ludger Ständker ◽  
Stefan Pöhlmann ◽  
Frédéric Baribaud ◽  
Armin Papkalla ◽  
...  

ABSTRACT Proteolytic processing of the abundant plasmatic human CC chemokine 1 (HCC-1) generates a truncated form, HCC-1[9-74], which is a potent agonist of CCR1, CCR3, and CCR5; promotes calcium influx and chemotaxis of T lymphoblasts, monocytes, and eosinophils; and inhibits infection by CCR5-tropic human immunodeficiency virus type 1 (HIV-1) isolates. In the present study we demonstrate that HCC-1[9-74] interacts with the second external loop of CCR5 and inhibits replication of CCR5-tropic HIV-1 strains in both primary T cells and monocyte-derived macrophages. Low concentrations of the chemokine, however, frequently enhanced the replication of CCR5-tropic HIV-1 isolates but not the replication of X4-tropic HIV-1 isolates. Only HCC-1[9-74] and HCC-1[10-74], but not other HCC-1 length variants, displayed potent anti-HIV-1 activities. Fluorescence-activated cell sorter analysis revealed that HCC-1[9-74] caused up to 75% down-regulation of CCR5 cell surface expression, whereas RANTES (regulated on activation, normal T-cell expressed and secreted) achieved a reduction of only about 40%. Studies performed with green fluorescent protein-tagged CCR5 confirmed that both HCC-1[9-74] and RANTES, but not full-length HCC-1, mediated specific internalization of the CCR5 HIV-1 entry cofactor. Our results demonstrate that the interaction with HCC-1[9-74] causes effective intracellular sequestration of CCR5, but they also indicate that the effect of HCC-1[9-74] on viral replication is subject to marked cell donor- and HIV-1 isolate-dependent variations.


2005 ◽  
Vol 79 (15) ◽  
pp. 10053-10058 ◽  
Author(s):  
Angélique B. van ′t Wout ◽  
J. Victor Swain ◽  
Michael Schindler ◽  
Ushnal Rao ◽  
Melissa S. Pathmajeyan ◽  
...  

ABSTRACT Several recent reports indicate that cholesterol might play an important role in human immunodeficiency virus type 1 (HIV-1) replication. We investigated the effects of HIV-1 infection on cholesterol biosynthesis and uptake using microarrays. HIV-1 increased gene expression of cholesterol genes in both transformed T-cell lines and primary CD4+ T cells. Consistent with our microarray data, 14C-labeled mevalonate and acetate incorporation was increased in HIV-1-infected cells. Our data also demonstrate that changes in cholesterol biosynthesis and uptake are only observed in the presence of functional Nef, suggesting that increased cholesterol synthesis may contribute to Nef-mediated enhancement of virion infectivity and viral replication.


2002 ◽  
Vol 76 (15) ◽  
pp. 7812-7821 ◽  
Author(s):  
Rogier W. Sanders ◽  
Esther C. de Jong ◽  
Christopher E. Baldwin ◽  
Joost H. N. Schuitemaker ◽  
Martien L. Kapsenberg ◽  
...  

ABSTRACT Dendritic cells (DC) support human immunodeficiency virus type 1 (HIV-1) transmission by capture of the virus particle in the mucosa and subsequent transport to the draining lymph node, where HIV-1 is presented to CD4+ Th cells. Virus transmission involves a high-affinity interaction between the DC-specific surface molecule DC-SIGN and the viral envelope glycoprotein gp120 and subsequent internalization of the virus, which remains infectious. The mechanism of viral transmission from DC to T cells is currently unknown. Sentinel immature DC (iDC) develop into Th1-promoting effector DC1 or Th2-promoting DC2, depending on the activation signals. We studied the ability of these effector DC subsets to support HIV-1 transmission in vitro. Compared with iDC, virus transmission is greatly upregulated for the DC1 subset, whereas DC2 cells are inactive. Increased transmission by DC1 correlates with increased expression of ICAM-1, and blocking studies confirm that ICAM-1 expression on DC is important for HIV transmission. The ICAM-1-LFA-1 interaction is known to be important for immunological cross talk between DC and T cells, and our results indicate that this cell-cell contact is exploited by HIV-1 for efficient transmission.


2006 ◽  
Vol 80 (4) ◽  
pp. 1680-1687 ◽  
Author(s):  
Florence M. Brunel ◽  
Michael B. Zwick ◽  
Rosa M. F. Cardoso ◽  
Josh D. Nelson ◽  
Ian A. Wilson ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 4E10 binds to a linear, highly conserved epitope within the membrane-proximal external region of the HIV-1 envelope glycoprotein gp41. We have delineated the peptide epitope of the broadly neutralizing 4E10 antibody to gp41 residues 671 to 683, using peptides with different lengths encompassing the previously suggested core epitope (NWFDIT). Peptide binding to the 4E10 antibody was assessed by competition enzyme-linked immunosorbent assay, and the Kd values of selected peptides were determined using surface plasmon resonance. An Ala scan of the epitope indicated that several residues, W672, F673, and T676, are essential (>1,000-fold decrease in binding upon replacement with alanine) for 4E10 recognition. In addition, five other residues, N671, D674, I675, W680, and L679, make significant contributions to 4E10 binding. In general, the Ala scan results agree well with the recently reported crystal structure of 4E10 in complex with a 13-mer peptide and with our circular dichroism analyses. Neutralization competition assays confirmed that the peptide NWFDITNWLWYIKKKK-NH2 could effectively inhibit 4E10 neutralization. Finally, to limit the conformational flexibility of the peptides, helix-promoting 2-aminoisobutyric acid residues and helix-inducing tethers were incorporated. Several peptides have significantly improved affinity (>1,000-fold) over the starting peptide and, when used as immunogens, may be more likely to elicit 4E10-like neutralizing antibodies. Hence, this study represents the first stage toward iterative development of a vaccine based on the 4E10 epitope.


2004 ◽  
Vol 78 (14) ◽  
pp. 7645-7652 ◽  
Author(s):  
Peter C. Chien ◽  
Sandra Cohen ◽  
Michael Tuen ◽  
James Arthos ◽  
Pei-de Chen ◽  
...  

ABSTRACT T-helper responses are important for controlling chronic viral infections, yet T-helper responses specific to human immunodeficiency virus type 1 (HIV-1), particularly to envelope glycoproteins, are lacking in the vast majority of HIV-infected individuals. It was previously shown that the presence of antibodies to the CD4-binding domain (CD4bd) of HIV-1 glycoprotein 120 (gp120) prevents T-helper responses to gp120, but their suppressive mechanisms were undefined (C. E. Hioe et al., J. Virol. 75:10950-10957, 2001). The present study demonstrates that gp120, when complexed to anti-CD4bd antibodies, becomes more resistant to proteolysis by lysosomal enzymes from antigen-presenting cells such that peptide epitopes are not released and presented efficiently by major histocompatibility complex class II molecules to gp120-specific CD4 T cells. Antibodies to other gp120 regions do not confer this effect. Thus, HIV may evade anti-viral T-helper responses by inducing and exploiting antibodies that conceal the virus envelope antigens from T cells.


1996 ◽  
Vol 40 (11) ◽  
pp. 827-835 ◽  
Author(s):  
Yukako Ohshiro ◽  
Tsutomu Murakami ◽  
Kazuhiro Matsuda ◽  
Kiyoshi Nishioka ◽  
Keiichi Yoshida ◽  
...  

2005 ◽  
Vol 79 (21) ◽  
pp. 13714-13724 ◽  
Author(s):  
Mélanie R. Tardif ◽  
Michel J. Tremblay

ABSTRACT Memory CD4+ T cells are considered a stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) and a barrier to eradication of this retroviral infection in patients under therapy. It has been shown that memory CD4+ T cells are preferentially infected with HIV-1, but the exact mechanism(s) responsible for this higher susceptibility remains obscure. Previous findings indicate that incorporation of host-derived intercellular adhesion molecule 1 (ICAM-1) in HIV-1 increases virus infectivity. To measure the putative involvement of virus-anchored ICAM-1 in the preferential infection of memory cells by HIV-1, quiescent and activated naive and memory T-cell subsets were exposed to isogenic virions either lacking or bearing ICAM-1. Memory CD4+ T cells were found to be more susceptible than naive CD4+ T cells to infection with ICAM-1-bearing virions, as exemplified by a more important virus replication, an increase in integrated viral DNA copies, and a more efficient entry process. Interactions between virus-associated host ICAM-1 and cell surface LFA-1 under a cluster formation seem to be responsible for the preferential HIV-1 infection of the memory cell subset. Altogether, these data shed light on a potential mechanism by which HIV-1 preferentially targets long-lived memory CD4+ T cells.


Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1741-1746 ◽  
Author(s):  
CB Baumler ◽  
T Bohler ◽  
I Herr ◽  
A Benner ◽  
PH Krammer ◽  
...  

Abstract Increased apoptosis of CD4+ T cells is considered to be involved in CD4+ T-cell depletion in human immunodeficiency virus type-1 (HIV-1)- infected individuals progressing toward acquired immunodeficiency syndrome (AIDS). We have recently shown that CD95 (APO-1/Fas) expression is strongly increased in T cells of HIV-1-infected children. In this report we provide further evidence for a deregulated CD95 system in AIDS. CD95 expression in HIV-1+ children is not restricted to previously activated CD45RO+ T cells but is also increased on freshly isolated naive CD45RA+ T cells. In addition, specific CD95-mediated apoptosis is enhanced in both CD4+ and CD8+ T cells. Furthermore, levels of CD95 ligand mRNA are profoundly increased. Specific T-cell receptor/CD3-triggered apoptosis in HIV-1+ children is more enhanced in CD8+ than in CD4+ T cells. Accelerated activation induced cell death of T cells could partially be inhibited by blocking anti-CD95 antibody fragments. These data suggest an involvement of the CD95 receptor/ligand system in T-cell depletion and apoptosis in AIDS and may open new avenues of rational intervention strategies.


2005 ◽  
Vol 49 (5) ◽  
pp. 1761-1769 ◽  
Author(s):  
Anthony J. Smith ◽  
Peter R. Meyer ◽  
Deshratn Asthana ◽  
Margarita R. Ashman ◽  
Walter A. Scott

ABSTRACT Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with 3′-azido-3′-deoxythymidine (AZT) selects for mutant forms of viral reverse transcriptase (RT) with increased ability to remove chain-terminating nucleotides from blocked DNA chains. We tested various cell extracts for the presence of endogenous acceptor substrates for this reaction. Cell extracts incubated with HIV-1 RT and [32P]ddAMP-terminated DNA primer/template gave rise to 32P-labeled adenosine 2′,3′-dideoxyadenosine 5′,5′′′−P1,P4-tetraphosphate (Ap4ddA), ddATP, Gp4ddA, and Ap3ddA, corresponding to the transfer of [32P]ddAMP to ATP, PPi, GTP, and ADP, respectively. Incubation with [32P]AZT monophosphate (AZTMP)-terminated primer/template gave rise to the analogous 32P-labeled AZT derivatives. Based on the rates of formation of the specific excision products, ATP and PPi levels were determined: ATP was present at 1.3 to 2.2 mM in H9 cells, macrophages, and unstimulated CD4+ or CD8+ T cells, while PPi was present at 7 to 15 μM. Under these conditions, the ATP-dependent reaction predominated, and excision by the AZT-resistant mutant RT was more efficient than wild type RT. Activated CD4+ or CD8+ T cells contained 1.4 to 2.7 mM ATP and 55 to 79 μM PPi. These cellular PPi concentrations are lower than previously reported; nonetheless, the PPi-dependent reaction predominated in extracts from activated T cells, and excision by mutant and wild-type RT occurred with similar efficiency. While PPi-dependent excision may contribute to AZT resistance in vivo, it is likely that selection of AZT-resistant mutants occurs primarily in an environment where the ATP-dependent reaction predominates.


1999 ◽  
Vol 73 (4) ◽  
pp. 3449-3454 ◽  
Author(s):  
Ines Frank ◽  
Laco Kacani ◽  
Heribert Stoiber ◽  
Hella Stössel ◽  
Martin Spruth ◽  
...  

ABSTRACT During the budding process, human immunodeficiency virus type 1 (HIV-1) acquires cell surface molecules; thus, the viral surface of HIV-1 reflects the antigenic pattern of the host cell. To determine the source of HIV-1 released from cocultures of dendritic cells (DC) with T cells, immature DC (imDC), mature DC (mDC), T cells, and their cocultures were infected with different HIV-1 isolates. The macrophage-tropic HIV-1 isolate Ba-L allowed viral replication in both imDC and mDC, whereas the T-cell-line-tropic primary isolate PI21 replicated in mDC only. By a virus capture assay, HIV-1 was shown to carry a T-cell- or DC-specific cell surface pattern after production by T cells or DC, respectively. Upon cocultivation of HIV-1-pulsed DC with T cells, HIV-1 exclusively displayed a typical T-cell pattern. Additionally, functional analysis revealed that HIV-1 released from imDC–T-cell cocultures was more infectious than HIV-1 derived from mDC–T-cell cocultures and from cultures of DC, T cells, or peripheral blood mononuclear cells alone. Therefore, we conclude that the interaction of HIV-1-pulsed imDC with T cells in vivo might generate highly infectious virus which primarily originates from T cells.


Sign in / Sign up

Export Citation Format

Share Document