peptide epitope
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 46)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Tobias V Lanz ◽  
R Camille Brewer ◽  
Peggy P Ho ◽  
Kevin M Jude ◽  
Daniel Fernandez ◽  
...  

Abstract Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system (CNS). B lymphocytes in the cerebrospinal fluid (CSF) of MS patients contribute to inflammation and secrete oligoclonal immunoglobulins. Epstein-Barr virus (EBV) infection has been linked to MS epidemiologically, but its pathological role remains unclear. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBNA1 and the CNS protein GlialCAM, and provide structural and in-vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements, and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment allowed for tracking the development of the naïve EBNA1-restricted antibody to a mature EBNA1/GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates the mouse model of MS and anti-EBNA1/GlialCAM antibodies are prevalent in MS patients. Our results provide a mechanistic link for the association between MS and EBV, and could guide the development of novel MS therapies.


2021 ◽  
pp. canres.2200.2021
Author(s):  
Songfa Zhang ◽  
Chuan Yan ◽  
David G. Millar ◽  
Qiqi Yang ◽  
James M. Heather ◽  
...  

Author(s):  
Amanda Sanchez Machado ◽  
Vivian Tamietti Martins ◽  
Maria Victoria Humbert ◽  
Myron Christodoulides ◽  
Eduardo Antonio Ferraz Coelho

Author(s):  
VV Chagovets ◽  
VG Vasil'ev ◽  
MV Iurova ◽  
GN Khabas ◽  
SV Pavlovich ◽  
...  

Mucins are large glycoproteins characterized by the abundant O-linked oligosaccharides (O-glycans) clustered on a protein backbone. Most of the circulating mucins are rapidly cleared by glycan-recognizing hepatic clearance receptors in the liver. Those mucins that remain in the bloodstream are most commonly used as markers in clinical diagnostics. One of such circulating mucins is MUC16; a peptide epitope of which is known as CA125 antigen — a marker for ovarian cancer. Here, using a targeted 1H-NMR profiling of plasma we are exploring a link between the measured CA125 values and the systemic metabolism of the patients within a group with confirmed high-grade ovarian cancer. The study allowed identifying statistically significant associations between the measured values of CA125 epitope and the plasma concentrations of glucose, glutamine, alanine, betaine and serine. The significance of the identified associations for the listed compounds is below 0.01. This, in turn, enables us to hypothesize about a possibility of including the metabolic measures into a composite score of the ovarian cancer based on the CA125 epitope of MUC16.


2021 ◽  
Vol 11 (12) ◽  
pp. 1583
Author(s):  
John M. Matsoukas ◽  
Irene Ligielli ◽  
Christos T. Chasapis ◽  
Konstantinos Kelaidonis ◽  
Vasso Apostolopoulos ◽  
...  

Multiple Sclerosis (MS) is a serious autoimmune disease. The patient in an advanced state of the disease has restrained mobility and remains handicapped. It is therefore understandable that there is a great need for novel drugs and vaccines for the treatment of MS. Herein we summarise two major approaches applied for the treatment of the disease using peptide molecules alone or conjugated with mannan. The first approach focuses on selective myelin epitope peptide or peptide mimetic therapy alone or conjugated with mannan, and the second on immune-therapy by preventing or controlling disease through the release of appropriate cytokines. In both approaches the use of cyclic peptides offers the advantage of increased stability from proteolytic enzymes. In these approaches, the synthesis of myelin epitope peptides conjugated to mannan is of particular interest as this was found to protect mice against experimental autoimmune encephalomyelitis, an animal model of MS, in prophylactic and therapeutic protocols. Protection was peptide-specific and associated with reduced antigen-specific T cell proliferation. The aim of the studies of these peptide epitope analogs is to understand their molecular basis of interactions with human autoimmune T-cell receptor and a MS-associated human leucocyte antigen (HLA)-DR2b. This knowledge will lead the rational design to new beneficial non-peptide mimetic analogs for the treatment of MS. Some issues of the use of nanotechnology will also be addressed as a future trend to tackle the disease. We highlight novel immunomodulation and vaccine-based research against MS based on myelin epitope peptides and strategies developed in our laboratories.


Author(s):  
Lili Zhao ◽  
Na Han ◽  
Yali Zheng ◽  
Huiying Rao ◽  
Jia Li ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shows a high degree of homology with SARS-CoV. They share genes, protein sequences, clinical manifestations, and cellular entry patterns. Thus, SARS research may serve helpful in gaining a better understanding of the current coronavirus disease 2019 (COVID-19) pandemic. Serum antibodies from convalescent patients with SARS collected in 2018 were used to target the recombinant SARS-CoV-2 spike protein via a chemiluminescence microsphere immunoassay. Antibodies of convalescent patients with SARS exhibited serous immune cross-reactivity with the SARS-CoV-2 spike protein. The serous antibodies, excluding S22 of convalescent patients with SARS, did not competitively inhibit the binding of SARS-CoV-2 spike protein to ACE2. T cellular immunity research was conducted in vitro using peripheral blood mononuclear cells (PBMCs) stimulated by pooled peptide epitopes 15 years post-infection. Interferon gamma was detected and the PBMC transcriptomic profile was obtained. The heatmap of the transcriptomic profile showed that mRNAs and circRNAs of the SARS group clustered together after being stimulated by the peptide epitope pool. Differentially expressed mRNAs were most significantly enriched in immunity and signal transduction (P < 0.01). SARS elicits cytokine and chemokine responses, partially consistent with previously published data about COVID-19. Overall, our results indicate that antibodies from convalescent patients with SARS persisted for 15 years and displayed immune cross-reactivity with the SARS-CoV-2 spike protein. The immune status of patients with SARS 15 years post-infection may provide a better understanding of the future immune status of patients with COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Wang ◽  
Meng Xu ◽  
Haofeng Hu ◽  
Lun Zhang ◽  
Fei Ye ◽  
...  

Pathological angiogenesis is mainly initiated by the binding of abnormal expressed vascular endothelial growth factors (VEGFs) to their receptors (VEGFRs). Blocking the VEGF/VEGFR interaction is a clinically proven treatment in cancer. Our previous work by epitope scan had identified cyclic peptides, mimicking the loop 1 of VEGF-A, VEGF-B and placental growth factor (PlGF), inhibited effectively the VEGF/VEGFR interaction in ELISA. We described here the docking study of these peptides on VEGFR1 to identify their binding sites. The cellular anti-angiogenic activities were examined by inhibition of VEGF-A induced cell proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs). The ability of these peptides to inhibit MAPK/ERK1/2 signaling pathway was examined as well. On chick embryo chorioallantoic membrane (CAM) model, a cyclic peptide named B-cL1 with most potent in vitro activity showed important in vivo anti-angiogenic effect. Finally, B-cL1 inhibited VEGF induced human gastric cancer SGC-7901 cells proliferation. It showed anti-tumoral effect on SGC-7901 xenografted BALB/c nude mouse model. The cyclic peptides B-cL1 constitutes an anti-angiogenic peptide drug lead for the design of new and more potent VEGFR antagonists in the treatment of angiogenesis related diseases.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4785
Author(s):  
Enrico Kittel-Boselli ◽  
Karla Elizabeth González Soto ◽  
Liliana Rodrigues Loureiro ◽  
Anja Hoffmann ◽  
Ralf Bergmann ◽  
...  

Clinical translation of novel immunotherapeutic strategies such as chimeric antigen receptor (CAR) T-cells in acute myeloid leukemia (AML) is still at an early stage. Major challenges include immune escape and disease relapse demanding for further improvements in CAR design. To overcome such hurdles, we have invented the switchable, flexible and programmable adaptor Reverse (Rev) CAR platform. This consists of T-cells engineered with RevCARs that are primarily inactive as they express an extracellular short peptide epitope incapable of recognizing surface antigens. RevCAR T-cells can be redirected to tumor antigens and controlled by bispecific antibodies cross-linking RevCAR T- and tumor cells resulting in tumor lysis. Remarkably, the RevCAR platform enables combinatorial tumor targeting following Boolean logic gates. We herein show for the first time the applicability of the RevCAR platform to target myeloid malignancies like AML. Applying in vitro and in vivo models, we have proven that AML cell lines as well as patient-derived AML blasts were efficiently killed by redirected RevCAR T-cells targeting CD33 and CD123 in a flexible manner. Furthermore, by targeting both antigens, a Boolean AND gate logic targeting could be achieved using the RevCAR platform. These accomplishments pave the way towards an improved and personalized immunotherapy for AML patients.


2021 ◽  
Author(s):  
Trang Anh Nguyen-Le ◽  
Tabea Bartsch ◽  
Robert Wodtke ◽  
Florian Brandt ◽  
Claudia Arndt ◽  
...  

Abstract Immunotherapy using CAR-T cells is a new paradigm technology for cancer treatment. To avoid severe side effects and tumor escape variants observed for conventional CAR-T cells approach, adaptor CAR technologies are under development, where intermediate target modules redirect immune cells against cancer. In this work, silicon nanowire field effect transistors are used to assist in the development of target modules for an optimized CAR-T cell operation. Focusing on a library of seven variants of E5B9 peptide that is used as CAR peptide epitope, we performed multiplexed binding tests in serum using nanosensor chips. Peptides have been immobilized onto the sensor to compare the signals of transistor upon titration with anti-E5B9 antibodies. Correlation analysis of binding affinities and sensitivities enabled a selection of best candidates for the interaction between CAR and target modules. Finally, cytotoxic functionality of CAR-T cells in combination with the selected target modules were successfully proven. Our results open the perspective for the nanobiosensorics to go beyond the early diagnostics in the field of clinical cancer research, and paves the way towards personalization and efficient monitoring of the immunotherapeutic treatment, where the quantitative analysis with the standard techniques is not an option.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4201
Author(s):  
Rhiane Moody ◽  
Kirsty Wilson ◽  
Nirmala Chandralega Kampan ◽  
Orla M. McNally ◽  
Thomas W. Jobling ◽  
...  

Autoantibodies recognising phosphorylated heat shock factor 1 (HSF1-PO4) protein are suggested as potential new diagnostic biomarkers for early-stage high-grade serous ovarian cancer (HGSOC). We predicted in silico B-cell epitopes in human and murine HSF1. Three epitope regions were synthesised as peptides. Circulating immunoglobulin A (cIgA) against the predicted peptide epitopes or HSF1-PO4 was measured using ELISA, across two small human clinical trials of HGSOC patients at diagnosis. To determine whether chemotherapy would promote changes in reactivity to either HSF1-PO4 or the HSF-1 peptide epitopes, IgA responses were further assessed in a sample of patients after a full cycle of chemotherapy. Anti-HSF1-PO4 responses correlated with antibody responses to the three selected epitope regions, regardless of phosphorylation, with substantial cross-recognition of the corresponding human and murine peptide epitope variants. Assessing reactivity to individual peptide epitopes, compared to HSF1-PO4, improved assay sensitivity. IgA responses to HSF1-PO4 further increased significantly post treatment, indicating that HSF1-PO4 is a target for immunity in response to chemotherapy. Although performed in a small cohort, these results offer potential insights into the interplay between autoimmunity and ovarian cancer and offer new peptide biomarkers for early-stage HGSOC diagnosis, to monitor responses to chemotherapy, and widely for pre-clinical HGSOC research.


Sign in / Sign up

Export Citation Format

Share Document