scholarly journals Lentiviral Nef Proteins Utilize PAK2-Mediated Deregulation of Cofilin as a General Strategy To Interfere with Actin Remodeling

2010 ◽  
Vol 84 (8) ◽  
pp. 3935-3948 ◽  
Author(s):  
Bettina Stolp ◽  
Libin Abraham ◽  
Jochen M. Rudolph ◽  
Oliver T. Fackler

ABSTRACT Nef is an accessory protein and pathogenicity factor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) which elevates virus replication in vivo. We recently described for HIV type 1SF2 (HIV-1SF2) the potent interference of Nef with T-lymphocyte chemotaxis via its association with the cellular kinase PAK2. Mechanistic analysis revealed that this interaction results in deregulation of the actin-severing factor cofilin and thus blocks the chemokine-mediated actin remodeling required for cell motility. However, the efficiency of PAK2 association is highly variable among Nef proteins from different lentiviruses, prompting us to evaluate the conservation of this actin-remodeling/cofilin-deregulating mechanism. Based on the analysis of a total of 17 HIV-1, HIV-2, and SIV Nef proteins, we report here that inhibition of chemokine-induced actin remodeling as well as inactivation of cofilin are strongly conserved activities of lentiviral Nef proteins. Of note, even for Nef variants that display only marginal PAK2 association in vitro, these activities require the integrity of a PAK2 recruitment motif and the presence of endogenous PAK2. Thus, reduced in vitro affinity to PAK2 does not indicate limited functionality of Nef-PAK2 complexes in intact HIV-1 host cells. These results establish hijacking of PAK2 for deregulation of cofilin and inhibition of triggered actin remodeling as a highly conserved function of lentiviral Nef proteins, supporting the notion that PAK2 association may be critical for Nef's activity in vivo.

2007 ◽  
Vol 81 (22) ◽  
pp. 12210-12217 ◽  
Author(s):  
Greg Brennan ◽  
Yury Kozyrev ◽  
Toshiaki Kodama ◽  
Shiu-Lok Hu

ABSTRACT The TRIM5 family of proteins contains a RING domain, one or two B boxes, and a coiled-coil domain. The TRIM5α isoform also encodes a C-terminal B30.2(SPRY) domain, differences within which define the breadth and potency of TRIM5α-mediated retroviral restriction. Because Macaca nemestrina animals are susceptible to some human immunodeficiency virus (HIV) isolates, we sought to determine if differences exist in the TRIM5 gene and transcripts of these animals. We identified a two-nucleotide deletion (Δ2) in the transcript at the 5′ terminus of exon 7 in all M. nemestrina TRIM5 cDNA clones examined. This frameshift results in a truncated protein of 300 amino acids lacking the B30.2(SPRY) domain, which we have named TRIM5θ. This deletion is likely due to a single nucleotide polymorphism that alters the 3′ splice site between intron 6 and exon 7. In some clones, a deletion of the entire 27-nucleotide exon 7 (Δexon7) resulted in the restoration of the TRIM5 open reading frame and the generation of another novel isoform, TRIM5η. There are 18 amino acid differences between M. nemestrina TRIM5η and Macaca mulatta TRIM5α, some of which are at or near locations previously shown to affect the breadth and potency of TRIM5α-mediated restriction. Infectivity assays performed on permissive CrFK cells stably transduced with TRIM5η or TRIM5θ show that these isoforms are incapable of restricting either HIV type 1 (HIV-1) or simian immunodeficiency virus infection. The expression of TRIM5 alleles incapable of restricting HIV-1 infection may contribute to the previously reported increased susceptibility of M. nemestrina to HIV-1 infection in vivo.


2001 ◽  
Vol 75 (8) ◽  
pp. 3916-3924 ◽  
Author(s):  
Karen M. Duus ◽  
Eric D. Miller ◽  
Jonathan A. Smith ◽  
Grigoriy I. Kovalev ◽  
Lishan Su

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is frequently attenuated after long-term culture in vitro. The attenuation process probably involves mutations of functions required for replication and pathogenicity in vivo. Analysis of attenuated HIV-1 for replication and pathogenicity in vivo will help to define these functions. In this study, we examined the pathogenicity of an attenuated HIV-1 isolate in a laboratory worker accidentally exposed to a laboratory-adapted HIV-1 isolate. Using heterochimeric SCID-hu Thy/Liv mice as an in vivo model, we previously defined HIV-1 env determinants (HXB/LW) that reverted to replicate in vivo (L. Su, H. Kaneshima, M. L. Bonyhadi, R. Lee, J. Auten, A. Wolf, B. Du, L. Rabin, B. H. Hahn, E. Terwilliger, and J. M. McCune, Virology 227:46–52, 1997). Here we further demonstrate that HIV-1 replication in vivo can be separated from its pathogenic activity, in that the HXB/LW virus replicated to high levels in SCID-hu Thy/Liv mice, with no significant thymocyte depletion. Restoration of the nef gene in the recombinant HXB/LW genome restored its pathogenic activity, with no significant effect on HIV-1 replication in the thymus. Our results suggest that in vitro-attenuated HIV-1 lacks determinants for pathogenicity as well as for replication in vivo. Our data indicate that (i) the replication defect can be recovered in vivo by mutations in the envgene, without an associated pathogenic phenotype, and (ii)nef can function in the HXB/LW clone as a pathogenic factor that does not enhance HIV-1 replication in the thymus. Furthermore, the HXB/LW virus may be used to study mechanisms of HIV-1nef-mediated pathogenesis in vivo.


2000 ◽  
Vol 74 (17) ◽  
pp. 7699-7707 ◽  
Author(s):  
Tim Beaumont ◽  
Silvia Broersen ◽  
Ad van Nuenen ◽  
Han G. Huisman ◽  
Ana-Maria de Roda Husman ◽  
...  

ABSTRACT Development of disease is extremely rare in chimpanzees when inoculated with either T-cell-line-adapted neutralization-sensitive or primary human immunodeficiency virus type 1 (HIV-1), at first excluding a role for HIV-1 neutralization sensitivity in the clinical course of infection. Interestingly, we observed that short-term in vivo and in vitro passage of primary HIV-1 isolates through chimpanzee peripheral blood mononuclear cells (PBMC) resulted in a neutralization-sensitive phenotype. Furthermore, an HIV-1 variant reisolated from a chimpanzee 10 years after experimental infection was still sensitive to neutralization by soluble CD4, the CD4 binding site recognizing antibody IgG1b12 and autologous chimpanzee serum samples, but had become relatively resistant to neutralization by polyclonal human sera and neutralizing monoclonal antibodies. The initial adaptation of HIV-1 to replicate in chimpanzee PBMC seemed to coincide with a selection for viruses with low replicative kinetics. Neither coreceptor usage nor the expression level of CD4, CCR5, or CXCR4 on chimpanzee PBMC compared to human cells could explain the phenotypic changes observed in these chimpanzee-passaged viruses. Our data suggest that the increased neutralization sensitivity of HIV-1 after replication in chimpanzee cells may in part contribute to the long-term asymptomatic HIV-1 infection in experimentally infected chimpanzees.


2005 ◽  
Vol 79 (21) ◽  
pp. 13579-13586 ◽  
Author(s):  
W. David Wick ◽  
Otto O. Yang ◽  
Lawrence Corey ◽  
Steven G. Self

ABSTRACT The antiviral role of CD8+ cytotoxic T lymphocytes (CTLs) in human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. Specifically, the degree to which CTLs reduce viral replication by killing HIV-1-infected cells in vivo is not known. Here we employ mathematical models of the infection process and CTL action to estimate the rate that CTLs can kill HIV-1-infected cells from in vitro and in vivo data. Our estimates, which are surprisingly consistent considering the disparities between the two experimental systems, demonstrate that on average CTLs can kill from 0.7 to 3 infected target cells per day, with the variability in this figure due to epitope specificity or other factors. These results are compatible with the observed decline in viremia after primary infection being primarily a consequence of CTL activity and have interesting implications for vaccine design.


2005 ◽  
Vol 79 (3) ◽  
pp. 1470-1479 ◽  
Author(s):  
Isabel Scholz ◽  
Brian Arvidson ◽  
Doug Huseby ◽  
Eric Barklis

ABSTRACT The N-terminal domains (NTDs) of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein have been modeled to form hexamer rings in the mature cores of virions. In vitro, hexamer ring units organize into either tubes or spheres, in a pH-dependent fashion. To probe factors which might govern hexamer assembly preferences in vivo, we examined the effects of mutations at CA histidine residue 84 (H84), modeled at the outer edges of NTD hexamers, as well as a nearby histidine (H87) in the cyclophilin A (CypA) binding loop. Although mutations at H87 yielded infectious virions, mutations at H84 produced assembly-competent but poorly infectious virions. The H84 mutant viruses incorporated wild-type levels of CypA and viral RNAs and showed nearly normal signals in virus entry assays. However, mutant CA proteins assembled aberrant virus cores, and mutant core fractions retained abnormally high levels of CA but reduced reverse transcriptase activities. Our results suggest that HIV-1 CA residue 84 contributes to a structure which helps control either NTD hexamer assembly or the organization of hexamers into higher-order structures.


2000 ◽  
Vol 74 (14) ◽  
pp. 6689-6694 ◽  
Author(s):  
Alessandra Borsetti ◽  
Cristina Parolin ◽  
Barbara Ridolfi ◽  
Leonardo Sernicola ◽  
Andrea Geraci ◽  
...  

ABSTRACT The infection of CD4-negative cells by variants of tissue culture-adapted human immunodeficiency virus type 1 (HIV-1) or HIV-2 strains has been shown to be mediated by the CXCR4 coreceptor. Here we show that two in vitro-established CD4−/CCR5−/CXCR4+ human pre-T-cell lines (A3 and A5) can be productively infected by wild-type laboratory-adapted T-cell-tropic HIV-1 and HIV-2 strains in a CD4-independent, CXCR4-dependent fashion. Despite the absence of CCR5 expression, A3 and A5 cells were susceptible to infection by the simian immunodeficiency viruses SIVmac239 and SIVmac316. Thus, at least in A3 and A5 cells, one or more of the chemokine receptors can efficiently support the entry of HIV and SIV isolates in the absence of CD4. These findings suggest that to infect cells of different compartments, HIV and SIV could have evolved in vivo to bypass CD4 and to interact directly with an alternative receptor.


2013 ◽  
Vol 94 (6) ◽  
pp. 1318-1324 ◽  
Author(s):  
Akatsuki Saito ◽  
Masako Nomaguchi ◽  
Ken Kono ◽  
Yasumasa Iwatani ◽  
Masaru Yokoyama ◽  
...  

TRIM5α restricts human immunodeficiency virus type 1 (HIV-1) infection in cynomolgus monkey (CM) cells. We previously reported that a TRIMCyp allele expressing TRIM5–cyclophilin A fusion protein was frequently found in CMs. Here, we examined the influence of TRIM5 gene variation on the susceptibility of CMs to a monkey-tropic HIV-1 derivative (HIV-1mt) and found that TRIMCyp homozygotes were highly susceptible to HIV-1mt not only in vitro but also in vivo. These results provide important insights into the inter-individual differences in susceptibility of macaques to HIV-1mt.


2000 ◽  
Vol 74 (1) ◽  
pp. 184-192 ◽  
Author(s):  
Birgit Schramm ◽  
Michael L. Penn ◽  
Roberto F. Speck ◽  
Stephen Y. Chan ◽  
Erik De Clercq ◽  
...  

ABSTRACT The chemokine receptors CCR5 and CXCR4 function as the principal coreceptors for human immunodeficiency virus type 1 (HIV-1). Coreceptor function has also been demonstrated for a variety of related receptors in vitro. The relative contributions of CCR5, CXCR4, and other putative coreceptors to HIV-1 disease in vivo have yet to be defined. In this study, we used sequential primary isolates and recombinant strains of HIV-1 to demonstrate that CXCR4-using (X4) viruses emerging in association with disease progression are highly pathogenic in ex vivo lymphoid tissues compared to CXCR4-independent viruses. Furthermore, synthetic receptor antagonists that specifically block CXCR4-mediated entry dramatically suppressed the depletion of CD4+ T cells by recombinant and clinically derived X4 HIV-1 isolates. Moreover, in vitro specificity for the additional coreceptors CCR3, CCR8, BOB, and Bonzo did not augment cytopathicity or diminish sensitivity toward CXCR4 antagonists in lymphoid tissues. These data provide strong evidence to support the concept that adaptation to CXCR4 specificity in vivo accelerates HIV-1 disease progression. Thus, therapeutic intervention targeting the interaction of HIV-1 gp120 with CXCR4 may be highly valuable for suppressing the pathogenic effects of late-stage viruses.


2004 ◽  
Vol 78 (9) ◽  
pp. 4628-4637 ◽  
Author(s):  
Jing Lu ◽  
Prakash Sista ◽  
Françoise Giguel ◽  
Michael Greenberg ◽  
Daniel R. Kuritzkes

ABSTRACT Resistance to enfuvirtide (ENF; T-20), a fusion inhibitor of human immunodeficiency virus type 1 (HIV-1), is conferred by mutations in the first heptad repeat of the gp41 ectodomain. The replicative fitness of recombinant viruses carrying ENF resistance mutations was studied in growth competition assays. ENF resistance mutations, selected in vitro or in vivo, were introduced into the env gene of HIV-1NL4-3 by site-directed mutagenesis and expressed in HIV-1 recombinants carrying sequence tags in nef. The doubling time of ENF-resistant viruses was highly correlated with decreasing ENF susceptibility (R 2 = 0.859; P < 0.001). Initial fitness experiments focused on mutants identified by in vitro selection in the presence of ENF (L. T. Rimsky, D. C. Shugars, and T. J. Matthews, J. Virol. 72:986-993, 1998). In the absence of drug, these mutants displayed reduced fitness compared to wild-type virus with a relative order of fitness of wild type > I37T > V38 M > D36S/V38 M; this order was reversed in the presence of ENF. Likewise, recombinant viruses carrying ENF resistance mutations selected in vivo displayed reduced fitness in the absence of ENF with a relative order of wild type > N42T > V38A > N42T/N43K ≈ N42T/N43S > V38A/N42D ≈ V38A/N42T. Fitness and ENF susceptibility were inversely correlated (r = −0.988; P < 0.001). Similar results were obtained with recombinants expressing molecularly cloned full-length env genes obtained from patient-derived HIV-1 isolates before and after ENF treatment. Further studies are needed to determine whether the reduced fitness of ENF-resistant viruses alters their pathogenicity in vivo.


Sign in / Sign up

Export Citation Format

Share Document