scholarly journals Signatures in Simian Immunodeficiency Virus SIVsmE660 Envelope gp120 Are Associated with Mucosal Transmission but Not Vaccination Breakthrough in Rhesus Macaques

2015 ◽  
Vol 90 (4) ◽  
pp. 1880-1887 ◽  
Author(s):  
S. Abigail Smith ◽  
Katie M. Kilgore ◽  
Sudhir Pai Kasturi ◽  
Bali Pulendran ◽  
Eric Hunter ◽  
...  

ABSTRACTMucosal surfaces are vulnerable to human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection and thus are key sites for eliciting vaccine-mediated protection. Vaccine protocols carried out at the Yerkes Primate Research Center utilized SIVmac239-based immunization strategies with intrarectal and intravaginal SIVsmE660 challenge of rhesus macaques. We investigated whether there were genetic signatures associated with SIVsmE660 intrarectal and intravaginal transmissions in vaccinated and unvaccinated monkeys. When transmitted/founder (T/F) envelope (Env) sequences from 49 vaccinated and 15 unvaccinated macaques were compared to each other, we were unable to identify any vaccine breakthrough signatures. In contrast, when the vaccinated and control T/F Envs were combined and compared to the challenge stock, residues at gp120 positions 23, 45, 47, and 70 (Ile-Ala-Lys-Asn [I-A-K-N]) emerged as signatures of mucosal transmission. However, T/F Envs derived from intrarectal and intravaginal infections were not different. Our data suggest that the vaginal and rectal mucosal environments both imposed a strong selection bias for SIVsmE660 variants carrying I-A-K-N that was not further enhanced by immunization. These findings, combined with the strong conservation of A-K-N in most HIV-2/SIVsmm isolates and the analogous residues in HIV-1/SIVcpz isolates, suggest that these residues confer increased transmission fitness to SIVsmE660.IMPORTANCEMost HIV-1 infections occur across a mucosal barrier, and it is therefore important to understand why these sites are vulnerable and how to protect them with a vaccine. To gain insight into these questions, we studied rhesus macaques that were vaccinated with SIVmac239 and unvaccinated controls to determine whether the SIVsmE660 viral variants that infected these two groups were different. We did not find differences between viral variants in the absence versus presence of vaccination-induced immunity, but we did find that the SIVsmE660 viral variants that infected the monkeys, regardless of vaccination, were different from the dominant population found in the viral challenge inoculum. Our data suggest that the mucosal environments of the vagina and rectum both impose a strong selection for the SIVsmE660 variants in the challenge inoculum that are most like SIV and HIVs that circulate in nature.

1996 ◽  
Vol 183 (1) ◽  
pp. 215-225 ◽  
Author(s):  
A I Spira ◽  
P A Marx ◽  
B K Patterson ◽  
J Mahoney ◽  
R A Koup ◽  
...  

We used the simian immunodeficiency virus (SIV)/rhesus macaque model to study events that underlie sexual transmission of human immunodeficiency virus type 1 (HIV-1). Four female rhesus macaques were inoculated intravaginally with SIVmac251, and then killed 2, 5, 7, and 9 d later. A technique that detected polymerase chain reaction-amplified SIV in situ showed that the first cellular targets for SIV were in the lamina propria of the cervicovaginal mucosa, immediately subjacent to the epithelium. Phenotypic and localization studies demonstrated that many of the infected cells were likely to be dendritic cells. Within 2 d of inoculation, infected cells were identified in the paracortex and subcapsular sinus of the draining internal iliac lymph nodes. Subsequently, systemic dissemination of SIV was rapid, since culturable virus was detectable in the blood by day 5. From these results, we present a model for mucosal transmission of SIV and HIV-1.


2008 ◽  
Vol 82 (13) ◽  
pp. 6591-6599 ◽  
Author(s):  
Zandrea Ambrose ◽  
Lara Compton ◽  
Michael Piatak ◽  
Ding Lu ◽  
W. Gregory Alvord ◽  
...  

ABSTRACT The rising prevalence of human immunodeficiency virus type 1 (HIV-1) infection in women, especially in resource-limited settings, accentuates the need for accessible, inexpensive, and female-controlled preexposure prophylaxis strategies to prevent mucosal transmission of the virus. While many compounds can inactivate HIV-1 in vitro, evaluation in animal models for mucosal transmission of virus may help identify which approaches will be effective in vivo. Macaques challenged intravaginally with pathogenic simian immunodeficiency virus (SIVmac251) provide a model to preclinically evaluate candidate microbicides. 2-Hydroxypropyl-β-cyclodextrin (BCD) prevents HIV-1 and SIV infection of target cells at subtoxic doses in vitro. Consistent with these findings, intravaginal challenge of macaques with SIVmac251 preincubated with BCD prevented mucosal transmission, as measured by plasma viremia and antiviral antibodies, through 10 weeks postchallenge. In an initial challenge, BCD applied topically prior to SIVmac251 prevented intravaginal transmission of virus compared to controls (P < 0.0001). However, upon a second virus challenge following BCD pretreatment, the majority of the previously protected animals became infected. The mechanism through which animals become infected at a frequency similar to that of controls after prior exposure to BCD and SIVmac251 in subsequent intravaginal virus challenges (P = 0.63), despite the potent antiviral properties of BCD, remains to be determined. These results highlight the unpredictability of antiviral compounds as topical microbicides and suggest that repeated exposures to candidate treatments should be considered for in vivo evaluation.


2015 ◽  
Vol 89 (16) ◽  
pp. 8130-8151 ◽  
Author(s):  
Katie M. Kilgore ◽  
Megan K. Murphy ◽  
Samantha L. Burton ◽  
Katherine S. Wetzel ◽  
S. Abigail Smith ◽  
...  

ABSTRACTAntibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen.IMPORTANCEMany in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.


2005 ◽  
Vol 79 (18) ◽  
pp. 11580-11587 ◽  
Author(s):  
Laura M. J. Ylinen ◽  
Zuzana Keckesova ◽  
Sam J. Wilson ◽  
Srinika Ranasinghe ◽  
Greg J. Towers

ABSTRACT Primate lentiviruses have narrow host ranges, due in part to their sensitivities to mammalian intracellular antiviral factors such as APOBEC3G and TRIM5α. Despite the protection provided by this innate immune system, retroviruses are able to transfer between species where they can cause disease. This is true for sooty mangabey simian immunodeficiency virus, which has transferred to humans as HIV-2 and to rhesus macaques as SIVmac, where it causes AIDS. Here we examine the sensitivities of the closely related HIV-2 and SIVmac to restriction by TRIM5α. We show that rhesus TRIM5α can restrict HIV-2 but not the closely related SIVmac. SIVmac has not completely escaped TRIM5α, as shown by its sensitivity to distantly related TRIM5α from the New World squirrel monkey. Squirrel monkey TRIM5α blocks SIVmac infection after DNA synthesis and is not saturable with restriction-sensitive virus-like particles. We map the determinant for TRIM5α sensitivity to the structure in the capsid protein that recruits CypA into HIV-1 virions. We also make an SIV, mutated at this site, which bypasses restriction in all cells tested.


2004 ◽  
Vol 48 (9) ◽  
pp. 3483-3490 ◽  
Author(s):  
Michael J. Hofman ◽  
Joanne Higgins ◽  
Timothy B. Matthews ◽  
Niels C. Pedersen ◽  
Chalet Tan ◽  
...  

ABSTRACT The specificity of nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for the RT of human immunodeficiency virus type 1 (HIV-1) has prevented the use of simian immunodeficiency virus (SIV) in the study of NNRTIs and NNRTI-based highly active antiretroviral therapy. However, a SIV-HIV-1 chimera (RT-SHIV), in which the RT from SIVmac239 was replaced with the RT-encoding region from HIV-1, is susceptible to NNRTIs and is infectious to rhesus macaques. We have evaluated the antiviral activity of efavirenz against RT-SHIV and the emergence of efavirenz-resistant mutants in vitro and in vivo. RT-SHIV was susceptible to efavirenz with a mean effective concentration of 5.9 ± 4.5 nM, and RT-SHIV variants selected with efavirenz in cell culture displayed 600-fold-reduced susceptibility. The efavirenz-resistant mutants of RT-SHIV had mutations in RT similar to those of HIV-1 variants that were selected under similar conditions. Efavirenz monotherapy of RT-SHIV-infected macaques produced a 1.82-log-unit decrease in plasma viral-RNA levels after 1 week. The virus load rebounded within 3 weeks in one treated animal and more slowly in a second animal. Virus isolated from these two animals contained the K103N and Y188C or Y188L mutations. The RT-SHIV-rhesus macaque model may prove useful for studies of antiretroviral drug combinations that include efavirenz.


2003 ◽  
Vol 77 (1) ◽  
pp. 179-190 ◽  
Author(s):  
Koen K. A. Van Rompay ◽  
Jennifer L. Greenier ◽  
Kelly Stefano Cole ◽  
Patricia Earl ◽  
Bernard Moss ◽  
...  

ABSTRACT There is an urgent need for active immunization strategies that, if administered shortly after birth, could protect infants in developing countries from acquiring human immunodeficiency virus (HIV) infection through breast-feeding. Better knowledge of the immunogenic properties of vaccine candidates in infants and of the effect of maternal antibodies on vaccine efficacy will aid in the development of such a neonatal HIV vaccine. Simian immunodeficiency virus (SIV) infection of infant macaques is a useful animal model of pediatric HIV infection with which to address these questions. Groups of infant macaques were immunized at birth and 3 weeks of age with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol, and Env (MVA-SIVgpe) or live-attenuated SIVmac1A11. One MVA-SIVgpe-immunized group had maternally derived anti-SIV antibodies prior to immunization. Animals were challenged orally at 4 weeks of age with a genetically heterogeneous stock of virulent SIVmac251. Although all animals became infected, the immunized animals mounted better antiviral antibody responses, controlled virus levels more effectively, and had a longer disease-free survival than the unvaccinated infected monkeys. Maternal antibodies did not significantly reduce the efficacy of the MVA-SIVgpe vaccine. In conclusion, although the tested vaccines delayed the onset of AIDS, further studies are warranted to determine whether a vaccine that elicits stronger early immune responses at the time of virus exposure may be able to prevent viral infection or AIDS in infants.


2017 ◽  
Vol 91 (18) ◽  
Author(s):  
Christoph H. Fellinger ◽  
Matthew R. Gardner ◽  
Charles C. Bailey ◽  
Michael Farzan

ABSTRACT Rhesus macaques are used to model human immunodeficiency virus type 1 (HIV-1) infections, but they are not natural hosts of HIV-1 or any simian immunodeficiency virus (SIV). Rather, they became infected with SIV through cross-species transfer from sooty mangabeys in captivity. It has been shown that HIV-1 utilizes rhesus CD4 less efficiently than human CD4. However, the relative ability of SIV envelope glycoproteins to bind or utilize these CD4 orthologs has not been reported. Here we show that several SIV isolates, including SIVmac239, are more efficiently neutralized by human CD4-Ig (huCD4-Ig) than by the same molecule bearing rhesus CD4 domains 1 and 2 (rhCD4-Ig). An I39N mutation in CD4 domain 1, present in human and sooty mangabey CD4 orthologs, largely restored rhCD4-Ig neutralization of SIVmac239 and other SIV isolates. We further observed that SIVmac316, a derivative of SIVmac239, bound to and was neutralized by huCD4-Ig and rhCD4-Ig with nearly identical efficiencies. Introduction of two SIVmac316 CD4-binding site residues (G382R and H442Y) into the SIVmac239 envelope glycoprotein (Env) markedly increased its neutralization sensitivity to rhesus CD4-Ig without altering neutralization by human CD4-Ig, SIV neutralizing antibodies, or sera from SIV-infected macaques. These changes also allowed SIVmac239 Env to bind rhCD4-Ig more efficiently than huCD4-Ig. The variant with G382R and H442Y (G382R/H442Y variant) also infected cells expressing rhesus CD4 with markedly greater efficiency than did unaltered SIVmac239 Env. We propose that infections of rhesus macaques with SIVmac239 G382R/H442Y might better model some aspects of human infections. IMPORTANCE Rhesus macaque infection with simian immunodeficiency virus (SIV) has served as an important model of human HIV-1 infection. However, differences between this model and the human case have complicated the development of vaccines and therapies. Here we report the surprising observation that SIVmac239, a commonly used model virus, more efficiently utilizes human CD4 than the CD4 of rhesus macaques, whereas the closely related virus SIVmac316 uses both CD4 orthologs equally well. We used this insight to generate a form of SIVmac239 envelope glycoprotein (Env) that utilized rhesus CD4 more efficiently, while retaining its resistance to antibodies and sera from infected macaques. This Env can be used to make the rhesus model more similar in some ways to human infection, for example by facilitating infection of cells with low levels of CD4. This property may be especially important to efforts to eradicate latently infected cells.


2010 ◽  
Vol 84 (6) ◽  
pp. 3043-3058 ◽  
Author(s):  
Shari N. Gordon ◽  
Anna R. Weissman ◽  
Valentina Cecchinato ◽  
Claudio Fenizia ◽  
Zhong-Min Ma ◽  
...  

ABSTRACT Coinfection with human T-cell lymphotropic virus type 2 (HTLV-2) and human immunodeficiency virus type 1 (HIV-1) has been reported to have either a slowed disease course or to have no effect on progression to AIDS. In this study, we generated a coinfection animal model and investigated whether HTLV-2 could persistently infect macaques, induce a T-cell response, and impact simian immunodeficiency virus SIVmac251-induced disease. We found that inoculation of irradiated HTLV-2-infected T cells into Indian rhesus macaques elicited humoral and T-cell responses to HTLV-2 antigens at both systemic and mucosal sites. Low levels of HTLV-2 provirus DNA were detected in the blood, lymphoid tissues, and gastrointestinal tracts of infected animals. Exposure of HTLV-2-infected or naïve macaques to SIVmac251 demonstrated comparable levels of SIVmac251 viral replication, similar rates of mucosal and peripheral CD4+ T-cell loss, and increased T-cell proliferation. Additionally, neither the magnitude nor the functional capacity of the SIV-specific T-cell-mediated immune response was different in HTLV-2/SIVmac251 coinfected animals versus SIVmac251 singly infected controls. Thus, HTLV-2 targets mucosal sites, persists, and importantly does not exacerbate SIVmac251 infection. These data provide the impetus for the development of an attenuated HTLV-2-based vectored vaccine for HIV-1; this approach could elicit persistent mucosal immunity that may prevent HIV-1/SIVmac251 infection.


2003 ◽  
Vol 198 (10) ◽  
pp. 1551-1562 ◽  
Author(s):  
Ronald S. Veazey ◽  
Per Johan Klasse ◽  
Thomas J. Ketas ◽  
Jacqueline D. Reeves ◽  
Michael Piatak ◽  
...  

Human immunodeficiency virus type 1 (HIV-1) fuses with cells after sequential interactions between its envelope glycoproteins, CD4 and a coreceptor, usually CC chemokine receptor 5 (CCR5) or CXC receptor 4 (CXCR4). CMPD 167 is a CCR5-specific small molecule with potent antiviral activity in vitro. We show that CMPD 167 caused a rapid and substantial (4–200-fold) decrease in plasma viremia in six rhesus macaques chronically infected with simian immunodeficiency virus (SIV) strains SIVmac251 or SIVB670, but not in an animal infected with the X4 simian–human immunodeficiency virus (SHIV), SHIV-89.6P. In three of the SIV-infected animals, viremia reduction was sustained. In one, there was a rapid, but partial, rebound and in another, there was a rapid and complete rebound. There was a substantial delay (&gt;21 d) between the end of therapy and the onset of full viremia rebound in two animals. We also evaluated whether vaginal administration of gel-formulated CMPD 167 could prevent vaginal transmission of the R5 virus, SHIV-162P4. Complete protection occurred in only 2 of 11 animals, but early viral replication was significantly less in the 11 CMPD 167-recipients than in 9 controls receiving carrier gel. These findings support the development of small molecule CCR5 inhibitors as antiviral therapies, and possibly as components of a topical microbicide to prevent HIV-1 sexual transmission.


2007 ◽  
Vol 81 (12) ◽  
pp. 6175-6186 ◽  
Author(s):  
Jeffrey M. Milush ◽  
Kelly Stefano-Cole ◽  
Kimberli Schmidt ◽  
Andre Durudas ◽  
Ivona Pandrea ◽  
...  

ABSTRACT Mucosal transmission is the predominant mode of human immunodeficiency virus (HIV) infection worldwide, and the mucosal innate interferon response represents an important component of the earliest host response to the infection. Our goal here was to assess the changes in mRNA expression of innate mucosal genes after oral simian immunodeficiency virus (SIV) inoculation of rhesus macaques (Macaca mulatta) that were followed throughout their course of disease progression. The SIV plasma viral load was highest in the macaque that progressed rapidly to simian AIDS (99 days) and lowest in the macaque that progressed more slowly (>700 days). The mRNA levels of six innate/effector genes in the oral mucosa indicated that slower disease progression was associated with increased expression of these genes. This distinction was most evident when comparing the slowest-progressing macaque to the intermediate and rapid progressors. Expression levels of alpha and gamma interferons, the antiviral interferon-stimulated gene product 2′-5′ oligoadenylate synthetase (OAS), and the chemokines CXCL9 and CXCL10 in the slow progressor were elevated at each of the three oral mucosal biopsy time points examined (day 2 to 4, 14 to 21, and day 70 postinfection). In contrast, the more rapidly progressing macaques demonstrated elevated levels of these cytokine/chemokine mRNA at lymph nodes, coincident with decreased levels at the mucosal sites, and a decreased ability to elicit an effective anti-SIV antibody response. These data provide evidence that a robust mucosal innate/effector immune response is beneficial following lentiviral exposure; however, it is likely that the anatomical location and timing of the response need to be coordinated to permit an effective immune response able to delay progression to simian AIDS.


Sign in / Sign up

Export Citation Format

Share Document