scholarly journals Differential Restriction of Human Immunodeficiency Virus Type 2 and Simian Immunodeficiency Virus SIVmac by TRIM5α Alleles

2005 ◽  
Vol 79 (18) ◽  
pp. 11580-11587 ◽  
Author(s):  
Laura M. J. Ylinen ◽  
Zuzana Keckesova ◽  
Sam J. Wilson ◽  
Srinika Ranasinghe ◽  
Greg J. Towers

ABSTRACT Primate lentiviruses have narrow host ranges, due in part to their sensitivities to mammalian intracellular antiviral factors such as APOBEC3G and TRIM5α. Despite the protection provided by this innate immune system, retroviruses are able to transfer between species where they can cause disease. This is true for sooty mangabey simian immunodeficiency virus, which has transferred to humans as HIV-2 and to rhesus macaques as SIVmac, where it causes AIDS. Here we examine the sensitivities of the closely related HIV-2 and SIVmac to restriction by TRIM5α. We show that rhesus TRIM5α can restrict HIV-2 but not the closely related SIVmac. SIVmac has not completely escaped TRIM5α, as shown by its sensitivity to distantly related TRIM5α from the New World squirrel monkey. Squirrel monkey TRIM5α blocks SIVmac infection after DNA synthesis and is not saturable with restriction-sensitive virus-like particles. We map the determinant for TRIM5α sensitivity to the structure in the capsid protein that recruits CypA into HIV-1 virions. We also make an SIV, mutated at this site, which bypasses restriction in all cells tested.

2017 ◽  
Vol 91 (18) ◽  
Author(s):  
Christoph H. Fellinger ◽  
Matthew R. Gardner ◽  
Charles C. Bailey ◽  
Michael Farzan

ABSTRACT Rhesus macaques are used to model human immunodeficiency virus type 1 (HIV-1) infections, but they are not natural hosts of HIV-1 or any simian immunodeficiency virus (SIV). Rather, they became infected with SIV through cross-species transfer from sooty mangabeys in captivity. It has been shown that HIV-1 utilizes rhesus CD4 less efficiently than human CD4. However, the relative ability of SIV envelope glycoproteins to bind or utilize these CD4 orthologs has not been reported. Here we show that several SIV isolates, including SIVmac239, are more efficiently neutralized by human CD4-Ig (huCD4-Ig) than by the same molecule bearing rhesus CD4 domains 1 and 2 (rhCD4-Ig). An I39N mutation in CD4 domain 1, present in human and sooty mangabey CD4 orthologs, largely restored rhCD4-Ig neutralization of SIVmac239 and other SIV isolates. We further observed that SIVmac316, a derivative of SIVmac239, bound to and was neutralized by huCD4-Ig and rhCD4-Ig with nearly identical efficiencies. Introduction of two SIVmac316 CD4-binding site residues (G382R and H442Y) into the SIVmac239 envelope glycoprotein (Env) markedly increased its neutralization sensitivity to rhesus CD4-Ig without altering neutralization by human CD4-Ig, SIV neutralizing antibodies, or sera from SIV-infected macaques. These changes also allowed SIVmac239 Env to bind rhCD4-Ig more efficiently than huCD4-Ig. The variant with G382R and H442Y (G382R/H442Y variant) also infected cells expressing rhesus CD4 with markedly greater efficiency than did unaltered SIVmac239 Env. We propose that infections of rhesus macaques with SIVmac239 G382R/H442Y might better model some aspects of human infections. IMPORTANCE Rhesus macaque infection with simian immunodeficiency virus (SIV) has served as an important model of human HIV-1 infection. However, differences between this model and the human case have complicated the development of vaccines and therapies. Here we report the surprising observation that SIVmac239, a commonly used model virus, more efficiently utilizes human CD4 than the CD4 of rhesus macaques, whereas the closely related virus SIVmac316 uses both CD4 orthologs equally well. We used this insight to generate a form of SIVmac239 envelope glycoprotein (Env) that utilized rhesus CD4 more efficiently, while retaining its resistance to antibodies and sera from infected macaques. This Env can be used to make the rhesus model more similar in some ways to human infection, for example by facilitating infection of cells with low levels of CD4. This property may be especially important to efforts to eradicate latently infected cells.


2010 ◽  
Vol 84 (6) ◽  
pp. 3043-3058 ◽  
Author(s):  
Shari N. Gordon ◽  
Anna R. Weissman ◽  
Valentina Cecchinato ◽  
Claudio Fenizia ◽  
Zhong-Min Ma ◽  
...  

ABSTRACT Coinfection with human T-cell lymphotropic virus type 2 (HTLV-2) and human immunodeficiency virus type 1 (HIV-1) has been reported to have either a slowed disease course or to have no effect on progression to AIDS. In this study, we generated a coinfection animal model and investigated whether HTLV-2 could persistently infect macaques, induce a T-cell response, and impact simian immunodeficiency virus SIVmac251-induced disease. We found that inoculation of irradiated HTLV-2-infected T cells into Indian rhesus macaques elicited humoral and T-cell responses to HTLV-2 antigens at both systemic and mucosal sites. Low levels of HTLV-2 provirus DNA were detected in the blood, lymphoid tissues, and gastrointestinal tracts of infected animals. Exposure of HTLV-2-infected or naïve macaques to SIVmac251 demonstrated comparable levels of SIVmac251 viral replication, similar rates of mucosal and peripheral CD4+ T-cell loss, and increased T-cell proliferation. Additionally, neither the magnitude nor the functional capacity of the SIV-specific T-cell-mediated immune response was different in HTLV-2/SIVmac251 coinfected animals versus SIVmac251 singly infected controls. Thus, HTLV-2 targets mucosal sites, persists, and importantly does not exacerbate SIVmac251 infection. These data provide the impetus for the development of an attenuated HTLV-2-based vectored vaccine for HIV-1; this approach could elicit persistent mucosal immunity that may prevent HIV-1/SIVmac251 infection.


2016 ◽  
Vol 90 (24) ◽  
pp. 11087-11095 ◽  
Author(s):  
Fan Wu ◽  
Andrea Kirmaier ◽  
Ellen White ◽  
Ilnour Ourmanov ◽  
Sonya Whitted ◽  
...  

ABSTRACT TRIM5α polymorphism limits and complicates the use of simian immunodeficiency virus (SIV) for evaluation of human immunodeficiency virus (HIV) vaccine strategies in rhesus macaques. We previously reported that the TRIM5α-sensitive SIV from sooty mangabeys (SIVsm) clone SIVsmE543-3 acquired amino acid substitutions in the capsid that overcame TRIM5α restriction when it was passaged in rhesus macaques expressing restrictive TRIM5α alleles. Here we generated TRIM5α-resistant clones of the related SIVsmE660 strain without animal passage by introducing the same amino acid capsid substitutions. We evaluated one of the variants in rhesus macaques expressing permissive and restrictive TRIM5α alleles. The SIVsmE660 variant infected and replicated in macaques with restrictive TRIM5α genotypes as efficiently as in macaques with permissive TRIM5α genotypes. These results demonstrated that mutations in the SIV capsid can confer SIV resistance to TRIM5α restriction without animal passage, suggesting an applicable method to generate more diverse SIV strains for HIV vaccine studies. IMPORTANCE Many strains of SIV from sooty mangabey monkeys are susceptible to resistance by common rhesus macaque TRIM5α alleles and result in reduced virus acquisition and replication in macaques that express these restrictive alleles. We previously observed that spontaneous variations in the capsid gene were associated with improved replication in macaques, and the introduction of two amino acid changes in the capsid transfers this improved replication to the parent clone. In the present study, we introduced these mutations into a related but distinct strain of SIV that is commonly used for challenge studies for vaccine trials. These mutations also improved the replication of this strain in macaques with the restrictive TRIM5α genotype and thus will eliminate the confounding effects of TRIM5α in vaccine studies.


2015 ◽  
Vol 89 (16) ◽  
pp. 8130-8151 ◽  
Author(s):  
Katie M. Kilgore ◽  
Megan K. Murphy ◽  
Samantha L. Burton ◽  
Katherine S. Wetzel ◽  
S. Abigail Smith ◽  
...  

ABSTRACTAntibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen.IMPORTANCEMany in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.


2015 ◽  
Vol 89 (7) ◽  
pp. 4030-4034 ◽  
Author(s):  
Véronique Barateau ◽  
Xuan-Nhi Nguyen ◽  
Fanny Bourguillault ◽  
Grégory Berger ◽  
Stéphanie Cordeil ◽  
...  

The block toward human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) can be relieved by Vpx (viral protein X), which degrades sterile alpha motif-hydroxylase domain 1 (SAMHD1) or by exogenously added deoxynucleosides (dNs), lending support to the hypothesis that SAMHD1 acts by limiting deoxynucleoside triphosphates (dNTPs). This notion has, however, been questioned. We show that while dNs and Vpx increase the infectivity of HIV-1, only the latter restores the infectivity of a simian immunodeficiency virus of macaques variant, SIVMACΔVpx virus. This distinct behavior seems to map to CA, suggesting that species-specific CA interactors modulate infection of DCs.


2008 ◽  
Vol 82 (24) ◽  
pp. 12335-12345 ◽  
Author(s):  
Caroline Goujon ◽  
Vanessa Arfi ◽  
Thomas Pertel ◽  
Jeremy Luban ◽  
Julia Lienard ◽  
...  

ABSTRACT Human immunodeficiency virus type 2 (HIV-2)/simian immunodeficiency virus SIVSM Vpx is incorporated into virion particles and is thus present during the early steps of infection, when it has been reported to influence the nuclear import of viral DNA. We recently reported that Vpx promoted the accumulation of full-length viral DNA following the infection of human monocyte-derived dendritic cells (DCs). This positive effect was exerted following the infection of DCs with cognate viruses and with retroviruses as divergent as HIV-1, feline immunodeficiency virus, and even murine leukemia virus, leading us to suggest that Vpx counteracted an antiviral restriction present in DCs. Here, we show that Vpx is required, albeit to a different extent, for the infection of all myeloid but not of lymphoid cells, including monocytes, macrophages, and monocytoid THP-1 cells that had been induced to differentiate with phorbol esters. The intracellular localization of Vpx was highly heterogeneous and cell type dependent, since Vpx localized differently in HeLa cells and DCs. Despite these differences, no clear correlation between the functionality of Vpx and its intracellular localization could be drawn. As a first insight into its function, we determined that SIVSM/HIV-2 and SIVRCM Vpx proteins interact with the DCAF1 adaptor of the Cul4-based E3 ubiquitin ligase complex recently described to associate with HIV-1 Vpr and HIV-2 Vpx. However, the functionality of Vpx proteins in the infection of DCs did not strictly correlate with DCAF1 binding, and knockdown experiments failed to reveal a functional role for this association in differentiated THP-1 cells. Lastly, when transferred in the context of a replication-competent viral clone, Vpx was required for replication in DCs.


2005 ◽  
Vol 79 (13) ◽  
pp. 8560-8571 ◽  
Author(s):  
Marie-Christine Dazza ◽  
Michel Ekwalanga ◽  
Monique Nende ◽  
Karhemere Bin Shamamba ◽  
Pitchou Bitshi ◽  
...  

ABSTRACT We report the identification of a new simian immunodeficiency virus (SIV), designated SIVden, in a naturally infected Dent's Mona monkey (Cercopithecus mona denti), which was kept as pet in Kinshasa, capital of the Democratic Republic of Congo. SIVden is genetically distinct from the previously characterized primate lentiviruses. Analysis of the full-length genomic sequence revealed the presence of a vpu open reading frame. This gene is also found in the virus lineage of human immunodeficiency virus type 1 (HIV-1) and chimpanzee immunodeficiency virus (SIVcpz) and was recently described in viruses isolated from Cercopithecus nictitans, Cercopithecus mona, and Cercopithecus cephus. The SIVden vpu coding region is shorter than the HIV-1/SIVcpz and the SIVgsn, SIVmon, and SIVmus counterparts. Unlike Pan troglodytes schweinfurthii viruses (SIVcpzPts) and Cercopithecus monkey viruses (SIVgsn, SIVmon, and SIVmus), the SIVden Vpu contains the characteristic DSGXES motif which was shown to be involved in Vpu-mediated CD4 and IκBα proteolysis in HIV-1 infected cells. Although it harbors a vpu gene, SIVden is phylogenetically closer to SIVdeb isolated from De Brazza's monkeys (Cercopithecus neglectus), which lacks a vpu gene, than to Cercopithecus monkey viruses, which harbor a vpu sequence.


2004 ◽  
Vol 48 (9) ◽  
pp. 3483-3490 ◽  
Author(s):  
Michael J. Hofman ◽  
Joanne Higgins ◽  
Timothy B. Matthews ◽  
Niels C. Pedersen ◽  
Chalet Tan ◽  
...  

ABSTRACT The specificity of nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for the RT of human immunodeficiency virus type 1 (HIV-1) has prevented the use of simian immunodeficiency virus (SIV) in the study of NNRTIs and NNRTI-based highly active antiretroviral therapy. However, a SIV-HIV-1 chimera (RT-SHIV), in which the RT from SIVmac239 was replaced with the RT-encoding region from HIV-1, is susceptible to NNRTIs and is infectious to rhesus macaques. We have evaluated the antiviral activity of efavirenz against RT-SHIV and the emergence of efavirenz-resistant mutants in vitro and in vivo. RT-SHIV was susceptible to efavirenz with a mean effective concentration of 5.9 ± 4.5 nM, and RT-SHIV variants selected with efavirenz in cell culture displayed 600-fold-reduced susceptibility. The efavirenz-resistant mutants of RT-SHIV had mutations in RT similar to those of HIV-1 variants that were selected under similar conditions. Efavirenz monotherapy of RT-SHIV-infected macaques produced a 1.82-log-unit decrease in plasma viral-RNA levels after 1 week. The virus load rebounded within 3 weeks in one treated animal and more slowly in a second animal. Virus isolated from these two animals contained the K103N and Y188C or Y188L mutations. The RT-SHIV-rhesus macaque model may prove useful for studies of antiretroviral drug combinations that include efavirenz.


1998 ◽  
Vol 72 (1) ◽  
pp. 600-608 ◽  
Author(s):  
Marie Claude Georges-Courbot ◽  
Chong Yang Lu ◽  
Maria Makuwa ◽  
Paul Telfer ◽  
Richard Onanga ◽  
...  

ABSTRACT A seroprevalence survey was conducted for simian immunodeficiency virus (SIV) antibody in household pet monkeys in Gabon. Twenty-nine monkeys representing seven species were analyzed. By using human immunodeficiency virus type 2 (HIV-2)/SIVsm, SIVmnd, and SIVagm antigens, one red-capped mangabey (RCM) (Cercocebus torquatus torquatus) was identified as harboring SIV-cross-reactive antibodies. A virus isolate, termed SIVrcm, was subsequently established from this seropositive RCM by cocultivation of its peripheral blood mononuclear cells (PBMC) with PBMC from seronegative humans or RCMs. SIVrcm was also isolated by cocultivation of CD8-depleted RCM PBMC with Molt 4 clone 8 cells but not with CEMx174 cells. The lack of growth in CEMx174 cells distinguished this new SIV from all previously reported sooty mangabey-derived viruses (SIVsm), which grow well in this cell line. SIVrcm was also successfully transmitted (cell free) to human and rhesus PBMC as well as to Molt 4 clone 8 cells. To determine the evolutionary origins of this newly identified virus, subgenomic pol (475 bp) andgag (954 bp) gene fragments were amplified from infected cell culture DNA and sequenced. The position of SIVrcm relative to those of members of the other primate lentivirus lineages was then examined in evolutionary trees constructed from deduced protein sequences. This analysis revealed significantly discordant phylogenetic positions of SIVrcm in the two genomic regions. In trees derived from partial gag sequences, SIVrcm clustered independently from all other HIV and SIV strains, consistent with a new primate lentivirus lineage. However, in trees derived frompol sequences, SIVrcm grouped with the HIV-1/SIVcpz lineage. These findings suggest that the SIVrcm genome is mosaic and possibly is the result of a recombination event involving divergent lentiviruses in the distant past. Further analysis of this and other SIVrcm isolates may shed new light on the origin of HIV-1.


2003 ◽  
Vol 198 (10) ◽  
pp. 1551-1562 ◽  
Author(s):  
Ronald S. Veazey ◽  
Per Johan Klasse ◽  
Thomas J. Ketas ◽  
Jacqueline D. Reeves ◽  
Michael Piatak ◽  
...  

Human immunodeficiency virus type 1 (HIV-1) fuses with cells after sequential interactions between its envelope glycoproteins, CD4 and a coreceptor, usually CC chemokine receptor 5 (CCR5) or CXC receptor 4 (CXCR4). CMPD 167 is a CCR5-specific small molecule with potent antiviral activity in vitro. We show that CMPD 167 caused a rapid and substantial (4–200-fold) decrease in plasma viremia in six rhesus macaques chronically infected with simian immunodeficiency virus (SIV) strains SIVmac251 or SIVB670, but not in an animal infected with the X4 simian–human immunodeficiency virus (SHIV), SHIV-89.6P. In three of the SIV-infected animals, viremia reduction was sustained. In one, there was a rapid, but partial, rebound and in another, there was a rapid and complete rebound. There was a substantial delay (>21 d) between the end of therapy and the onset of full viremia rebound in two animals. We also evaluated whether vaginal administration of gel-formulated CMPD 167 could prevent vaginal transmission of the R5 virus, SHIV-162P4. Complete protection occurred in only 2 of 11 animals, but early viral replication was significantly less in the 11 CMPD 167-recipients than in 9 controls receiving carrier gel. These findings support the development of small molecule CCR5 inhibitors as antiviral therapies, and possibly as components of a topical microbicide to prevent HIV-1 sexual transmission.


Sign in / Sign up

Export Citation Format

Share Document