Transformation-defective mutants of feline sarcoma virus which express a product of the viral src gene.

1980 ◽  
Vol 35 (1) ◽  
pp. 129-140 ◽  
Author(s):  
L Donner ◽  
L P Turek ◽  
S K Ruscetti ◽  
L A Fedele ◽  
C J Sherr
Keyword(s):  
Src Gene ◽  
1988 ◽  
Vol 8 (10) ◽  
pp. 4190-4196
Author(s):  
M Ono ◽  
M Yakushinji ◽  
K Segawa ◽  
M Kuwano

The mouse cell line MO-5 is resistant to transformation by various chemical carcinogens and also by UV irradiation (C. Yasutake, Y. Kuratomi, M. Ono, S. Masumi, and M. Kuwano, Cancer Res. 47:4894-4899, 1987). Northern (RNA) blot analysis showed active expression of ras and myc genes in MO-5 and BALB/3T3 cells. The effect of transfection of various oncogenes on transformation was compared in MO-5 cells and parental BALB/3T3 cells. Activated c-H-ras, c-N-ras, and v-mos gene induced transformation foci of MO-5 and BALB/3T3. Introduction of the polyomavirus middle T-antigen (mTag) or the Rous sarcoma virus-related oncogene v-src, however, efficiently transformed BALB/3T3 but not MO-5 cells. Expression and phosphorylation of mTag and the associated c-src proteins were observed in mTag-transfected clones of MO-5 as in BALB/3T3 and phosphorylation of the src protein was observed in v-src-transfected BALB/3T3 and MO-5 clones. Hybrids between mTag- or v-src-induced transformants of BALB/3T3 and untransformed MO-5 maintained the transformation phenotype, suggesting that no dominant suppressor of transformation exists in MO-5. A hybrid clone between BALB/3T3 and MO-5 induced efficient transformation foci after transfection with the mTag gene, suggesting that the deficient transformation phenotype of MO-5 was recessive. Instead, some other alteration of MO-5, plausibly membrane function, might lead to abortive transformation by chemical carcinogens and also by mTag and the v-src gene product.


1986 ◽  
Vol 6 (12) ◽  
pp. 4155-4160
Author(s):  
J Y Kato ◽  
T Takeya ◽  
C Grandori ◽  
H Iba ◽  
J B Levy ◽  
...  

We have previously shown that Rous sarcoma virus variants that carry the cellular homolog (c-src) of the viral src gene (v-src) do not transform chicken embryo fibroblasts. We also have shown that replacement of sequences upstream or downstream from the BglI site of the cellular src gene with the corresponding regions of v-src restored transforming activity to the hybrid genes. Since there are only six amino acid changes between p60c-src and p60v-src within the sequences upstream from BglI, we constructed chimeric molecules involving v-src and c-src to determine the effect of each amino acid substitution on the biological activities of the gene product. We found that the change from Thr to Ile at position 338 or the replacement of a fragment of c-src containing Gly-63, Arg-95, and Thr-96 with a corresponding fragment of v-src containing Asp-63, Trp-95, and Ile-96 converted p60c-src into a transforming protein by the criteria of focus formation, anchorage-independent growth, and tumor formation in newborn chickens. These mutations also resulted in elevation of the protein kinase activity of p60c-src.


1984 ◽  
Vol 4 (8) ◽  
pp. 1508-1514
Author(s):  
A W Stoker ◽  
P J Enrietto ◽  
J A Wyke

Four temperature-sensitive (ts) Rous sarcoma virus src gene mutants with lesions in different parts of the gene represent three classes of alteration in pp60src. These classes are composed of mutants with (i) heat-labile protein kinase activities both in vitro and in vivo (tsLA27 and tsLA29), (ii) heat-labile kinases in vivo but not in vitro (tsLA33), and (iii) neither in vivo nor in vitro heat-labile kinases (tsLA32). The latter class indicates the existence of structural or functional pp60src domains that are required for transformation but do not grossly affect tyrosine kinase activity.


1984 ◽  
Vol 4 (5) ◽  
pp. 846-851
Author(s):  
T M Gilmer

The cellular homolog of the Rous sarcoma virus transforming gene (v-src) was cloned into a plasmid containing the simian virus 40 origin of replication and transcriptional signals. This recombinant plasmid, designated pSVOHCS11 , directs the synthesis of relatively high levels of c-src mRNA and c-src protein ( pp60c -src), when the plasmid is studied 48 to 72 h after calcium phosphate-mediated DNA transfection of COS (monkey) cells. The level of c-src mRNA synthesis is 50-fold higher than the amount of c-src RNA produced in uninfected chicken embryo fibroblasts. Furthermore, the level of pp60c -src expressed in pSVOHCS11 -transfected COS cells is approximately the same as that of pp60v -src in Rous sarcoma virus-transformed cells. Using this recombinant plasmid, we demonstrated that c-src mRNA contains sequences which map 3' to the previously identified c-src-v-src regions of homology. In view of the small amount of c-src mRNA and protein that can be isolated from uninfected cells, this transient expression system offers a convenient source of material for further analyses of the c-src gene product.


1985 ◽  
Vol 100 (2) ◽  
pp. 409-417 ◽  
Author(s):  
M D Resh ◽  
R L Erikson

Antiserum to the Rous sarcoma virus (RSV)-transforming protein, pp60v-src, was produced in rabbits immunized with p60 expressed in Escherichia coli. alpha p60 serum immunoprecipitated quantitatively more pp60v-src than did tumor-bearing rabbit (TBR) sera. When RSV-transformed cell lysates were preadsorbed with TBR serum, the remaining lysate contained additional pp60v-src, which was recognized only by reimmunoprecipitation with alpha p60 serum and not by TBR serum. In subcellular fractions of RSV-infected chicken embryo fibroblasts (RSV-CEFs) and field vole cells probed with TBR serum, the majority of the pp60v-src was associated with the plasma membrane-enriched P100 fraction. However, alpha p60 serum revealed equal distribution of pp60v-src and its kinase activity between the P1 (nuclear) and P100 fractions. The same results were obtained for pp60c-src in uninfected CEFs. On discontinuous sucrose gradients nearly 50% of the P1-pp60v-src sedimented with nuclei, in fractions where no plasma membrane was detected. Indirect immunofluorescence microscopy of RSV-CEFs with alpha p60 serum revealed a distinct pattern of perinuclear fluorescence, in addition to staining at the cell periphery. Thus the use of a highly specific antibody reveals that enzymatically active pp60v-src and pp60c-src molecules are present in other intracellular structures, probably juxtareticular nuclear membranes, in addition to the plasma membrane in normal, uninfected, and wild-type RSV-infected cells.


Sign in / Sign up

Export Citation Format

Share Document