Cross-reactive lysis of human targets infected with prototypic and clinical human immunodeficiency virus type 1 (HIV-1) strains by murine anti-HIV-1 IIIB env-specific cytotoxic T lymphocytes.

1993 ◽  
Vol 67 (6) ◽  
pp. 3409-3417 ◽  
Author(s):  
S Chada ◽  
C E DeJesus ◽  
K Townsend ◽  
W T Lee ◽  
L Laube ◽  
...  
1994 ◽  
Vol 180 (4) ◽  
pp. 1283-1293 ◽  
Author(s):  
T J Tsomides ◽  
A Aldovini ◽  
R P Johnson ◽  
B D Walker ◽  
R A Young ◽  
...  

We have established long-term cultures of several cell lines stably and uniformly expressing human immunodeficiency virus type 1 (HIV-1) in order to (a) identify naturally processed HIV-1 peptides recognized by cytotoxic T lymphocytes (CTL) from HIV-1-seropositive individuals and (b) consider the hypothesis that naturally occurring epitope densities on HIV-infected cells may limit their lysis by CTL. Each of two A2-restricted CD8+ CTL specific for HIV-1 gag or reverse transcriptase (RT) recognized a single naturally processed HIV-1 peptide in trifluoroacetic acid (TFA) extracts of infected cells: gag 77-85 (SLYNTVATL) or RT 476-484 (ILKEPVHGV). Both processed peptides match the synthetic peptides that are optimally active in cytotoxicity assays and have the consensus motif described for A2-associated peptides. Their abundances were approximately 400 and approximately 12 molecules per infected Jurkat-A2 cell, respectively. Other synthetic HIV-1 peptides active at subnanomolar concentrations were not present in infected cells. Except for the antigen processing mutant line T2, HIV-infected HLA-A2+ cell lines were specifically lysed by both A2-restricted CTL, although infected Jurkat-A2 cells were lysed more poorly by RT-specific CTL than by gag-specific CTL, suggesting that low cell surface density of a natural peptide may limit the effectiveness of some HIV-specific CTL despite their vigorous activity against synthetic peptide-treated target cells.


2000 ◽  
Vol 74 (14) ◽  
pp. 6695-6699 ◽  
Author(s):  
Michael E. Severino ◽  
Nikolaos V. Sipsas ◽  
Phuong Thi Nguyen ◽  
Spyros A. Kalams ◽  
Bruce D. Walker ◽  
...  

ABSTRACT We demonstrate that human immunodeficiency virus type 1 (HIV-1)-specific CD8+ cytotoxic T lymphocytes (CTL) suppress HIV-1 replication in primary lymphocytes, monocytes, and dendritic cells individually. Viral inhibition is significantly diminished in lymphocyte-dendritic cell clusters, suggesting that these clusters in vivo could be sites where viral replication is more difficult to control by CTL.


2003 ◽  
Vol 77 (5) ◽  
pp. 3077-3083 ◽  
Author(s):  
Mirabelle Dagarag ◽  
Hwee Ng ◽  
Rachel Lubong ◽  
Rita B. Effros ◽  
Otto O. Yang

ABSTRACT Telomere length is abnormally short in the CD8+ T-cell compartment of human immunodeficiency virus type 1 (HIV-1)-infected persons, likely because of chronic cell turnover. Although clonal exhaustion of CD8+ cytotoxic T lymphocytes (CTL) has been proposed as a mechanism for loss of antigen-specific responses, the functional consequences of exhaustion are poorly understood. Here we used telomerase transduction to evaluate the impact of senescence on CTL effector functions. Constitutive expression of telomerase in an HIV-1-specific CTL clone results in enhanced proliferative capacity, in agreement with prior studies of other human cell types. Whereas the CTL remain phenotypically normal in terms of antigenic specificity and requirements for proliferation, their cytolytic and antiviral capabilities are superior to those of control CTL. In contrast, their ability to produce gamma interferon and RANTES is essentially unchanged. The selective enhancement of cytolytic function in memory CTL by ectopic telomerase expression implies that loss of this function (but not cytokine production) is a specific consequence of replicative senescence. These data suggest a unifying mechanism for the in vivo observations that telomere lengths are shortened in the CD8+ cells of HIV-1-infected persons and that HIV-1-specific CTL are deficient in perforin. Telomerase transduction could therefore be a tool with which to explore a potential therapeutic approach to an important pathophysiologic process of immune dysfunction in chronic viral infection.


1999 ◽  
Vol 73 (8) ◽  
pp. 7065-7069 ◽  
Author(s):  
Sampa Santra ◽  
Patricia N. Fultz ◽  
Norman L. Letvin

ABSTRACT Chimpanzees have been important in studies of human immunodeficiency virus type 1 (HIV-1) pathogenesis and in evaluation of HIV-1 candidate vaccines. However, little information is available about HIV-1-specific cytotoxic T lymphocytes (CTL) in these animals. In the present study, in vitro stimulation of peripheral blood mononuclear cells (PBMC) from infected chimpanzees with HIV-1 Gag peptides was shown to be a sensitive, reproducible method of expanding HIV-1-specific CD8+ effector CTL. Of interest, PBMC from two chimpanzees had CTL activity against Gag epitopes also recognized by major histocompatibility complex class I-restricted CTL from HIV-1-infected humans. The use of peptide stimulation will help to clarify the role of CTL in vaccine-mediated protection and HIV-1 disease progression in this important animal model.


1990 ◽  
Vol 172 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
B Ardman ◽  
M A Sikorski ◽  
M Settles ◽  
D E Staunton

Sera from human immunodeficiency virus type 1 (HIV-1)-infected and -noninfected individuals were screened for antibodies that could bind to native T cell differentiation antigens. Antibodies that could immunoprecipitate CD43 (sialophorin, leukosialin) from a T cell lymphoma line were detected in sera from 27% of patients, and antibodies that could bind specifically to transfected cells expressing CD43 were detected in 47% of patients. The anti-CD43 antibodies were related to HIV-1 infection in that no patients with other chronic viral infections or systemic lupus erythematosus contained such antibodies in their sera. The anti-CD43 autoantibodies bound to a partially sialylated form of CD43 expressed by normal human thymocytes, but not by normal, circulating T lymphocytes. However, the determinant(s) recognized by the anti-CD43 autoantibodies was present on a large proportion of circulating T lymphocytes, but masked from antibody recognition by sialic acid residues. These results demonstrate that HIV-1 infection is specifically associated with the production of autoantibodies that bind to a native T cell surface antigen.


1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2016 ◽  
Vol 90 (17) ◽  
pp. 7607-7617 ◽  
Author(s):  
Hélène Dutartre ◽  
Mathieu Clavière ◽  
Chloé Journo ◽  
Renaud Mahieux

Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4+T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targetedin vivoby both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4+T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading totrans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs (“cis-infection”) and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.


Sign in / Sign up

Export Citation Format

Share Document