scholarly journals Infection of central nervous system cells by ecotropic murine leukemia virus in C58 and AKR mice and in in utero-infected CE/J mice predisposes mice to paralytic infection by lactate dehydrogenase-elevating virus.

1995 ◽  
Vol 69 (1) ◽  
pp. 308-319 ◽  
Author(s):  
G W Anderson ◽  
G A Palmer ◽  
R R Rowland ◽  
C Even ◽  
P G Plagemann
2016 ◽  
Vol 90 (7) ◽  
pp. 3385-3399 ◽  
Author(s):  
Ying Li ◽  
Jaclyn M. Dunphy ◽  
Carlos E. Pedraza ◽  
Connor R. Lynch ◽  
Sandra M. Cardona ◽  
...  

ABSTRACTCertain murine leukemia viruses (MLVs) are capable of inducing fatal progressive spongiform motor neuron disease in mice that is largely mediated by viral Env glycoprotein expression within central nervous system (CNS) glia. While the etiologic mechanisms and the glial subtypes involved remain unresolved, infection of NG2 glia was recently observed to correlate spatially and temporally with altered neuronal physiology and spongiogenesis. Since one role of NG2 cells is to serve as oligodendrocyte (OL) progenitor cells (OPCs), we examined here whether their infection by neurovirulent (FrCasE) or nonneurovirulent (Fr57E) ecotropic MLVs influenced their viability and/or differentiation. Here, we demonstrate that OPCs, but not OLs, are major CNS targets of both FrCasE and Fr57E. We also show that MLV infection of neural progenitor cells (NPCs) in culture did not affect survival, proliferation, or OPC progenitor marker expression but suppressed certain glial differentiation markers. Assessment of glial differentiationin vivousing transplanted transgenic NPCs showed that, while MLVs did not affect cellular engraftment or survival, they did inhibit OL differentiation, irrespective of MLV neurovirulence. In addition, in chimeric brains, where FrCasE-infected NPC transplants caused neurodegeneration, the transplanted NPCs proliferated. These results suggest that MLV infection is not directly cytotoxic to OPCs but rather acts to interfere with OL differentiation. Since both FrCasE and Fr57E viruses restrict OL differentiation but only FrCasE induces overt neurodegeneration, restriction of OL maturation alone cannot account for neuropathogenesis. Instead neurodegeneration may involve a two-hit scenario where interference with OPC differentiation combined with glial Env-induced neuronal hyperexcitability precipitates disease.IMPORTANCEA variety of human and animal retroviruses are capable of causing central nervous system (CNS) neurodegeneration manifested as motor and cognitive deficits. These retroviruses infect a variety of CNS cell types; however, the specific role each cell type plays in neuropathogenesis remains to be established. The NG2 glia, whose CNS functions are only now emerging, are a newly appreciated viral target in murine leukemia virus (MLV)-induced neurodegeneration. Since one role of NG2 glia is that of oligodendrocyte progenitor cells (OPCs), we investigated here whether their infection by the neurovirulent MLV FrCasE contributed to neurodegeneration by affecting OPC viability and/or development. Our results show that both neurovirulent and nonneurovirulent MLVs interfere with oligodendrocyte differentiation. Thus, NG2 glial infection could contribute to neurodegeneration by preventing myelin formation and/or repair and by suspending OPCs in a state of persistent susceptibility to excitotoxic insult mediated by neurovirulent virus effects on other glial subtypes.


Virology ◽  
1990 ◽  
Vol 177 (1) ◽  
pp. 384-387 ◽  
Author(s):  
Nancy A. Simonian ◽  
Louis A. Rosenthal ◽  
Jonathan Korostoff ◽  
William F. Hickey ◽  
Kenneth J. Blank ◽  
...  

1980 ◽  
Vol 151 (4) ◽  
pp. 975-979 ◽  
Author(s):  
J S Tung ◽  
E Fleissner

Thymocytes of AKR mice express two species of gp70, the envelope glycoprotein of murine leukemia virus (MuLV), encoded by the env gene. One is denoted Ec+ gp70 in reference to the type-antigen Ec and association with ecotropic virus. The other, Ec- gp70, resembles gp70 found also on thymocytes of mouse strains that are not overt producers of MuLV, and has no evident relation to ecotropic virus. Expression of Ec- gp70 type, but not of Ec+ gp70 type, is amplified with age on AKR thymocytes. In contrast, viral core polyproteins, encoded by the gag gene and simultaneously amplified with age, appear to be related to ecotropic virus. These observations imply selective amplification of products of env and gag genes from two sorts of provirus, a phenomenon which may be connected to the dual genetic origin of recombinant mink-cell-focus inducing viruses in AKR mice.


Science ◽  
1972 ◽  
Vol 178 (4063) ◽  
pp. 860-862 ◽  
Author(s):  
W. P. Rowe ◽  
J. W. Hartley ◽  
T. Bremner

1976 ◽  
Vol 143 (1) ◽  
pp. 32-46 ◽  
Author(s):  
H Ikeda ◽  
W P Rowe ◽  
E A Boyse ◽  
E Stockert ◽  
H Sato ◽  
...  

In a further genetic study of murine leukemia virus (MuLV) and its components we examined the backcross C57L X (C57L X AKR). This population was selected because strains AKR and C57L are both Fv-1n, and the restriction which the Fu-1b allele imposes on the output of virus was thereby obviated. The segregants were scored for three characters: (a) infectious Gross-AKR-type MuLV (V), in the tail; (b) group-specific antigen indicative of p30 internal viral protein, in spleen; and (c) GIX antigen, now thought to be indicative of gp69/71 viral envelope glycoprotein, on thymocytes. Our conclusions are: (a) It is confirmed that the AKR mouse has two unlinked chromosomal genes, Akv-1 and Akv-2, each of which can independently give rise to the life-long high output of MuLV that is characteristic of AKR mice. (b) Of the eight phenotypes that could possibly be derived from segregation of the three pairs of independent alternative traits, seven were observed, but on progeny testing only three were shown to reflect stably heritable genotypes; these were V+p30+GIX+ and V-p30-GIX- (the parental types) and V-p30+GIX+. A third, newly identified AKR gene, designated Akvp, segregating independently of Akv-1 and Akv-2, also determines expression of p30 and GIX but in this case independently of XC-detectable MuLV. (c) The four remaining observed phenotypes, which did not breed true on progeny testing, involved mostly antigen-negative parents yielding antigen-positive progeny; it is likely that these discrepancies represented suppression of phenotype by a maternal resistance factor.


Sign in / Sign up

Export Citation Format

Share Document