scholarly journals The H4 subunit of vaccinia virus RNA polymerase is not required for transcription initiation at a viral late promoter.

1995 ◽  
Vol 69 (4) ◽  
pp. 2602-2604 ◽  
Author(s):  
C F Wright ◽  
A M Coroneos
1987 ◽  
Vol 7 (1) ◽  
pp. 7-14 ◽  
Author(s):  
S S Broyles ◽  
B Moss

A high-molecular-weight protein complex that is capable of accurate transcription initiation and termination of vaccinia virus early genes without additional factors was demonstrated. The complex was solubilized by disruption of purified virions, freed of DNA by passage through a DEAE-cellulose column, and isolated by glycerol gradient sedimentation. All detectable RNA polymerase activity was associated with the transcription complex, whereas the majority of enzymes released from virus cores including mRNA (nucleoside-2'-O)methyltransferase, poly(A) polymerase, topoisomerase, nucleoside triphosphate phosphohydrolase II, protein kinase, and single-strand DNase sedimented more slowly. Activities corresponding to two enzymes, mRNA guanylyltransferase (capping enzyme) and nucleoside triphosphate phosphohydrolase I (DNA-dependent ATPase), partially sedimented with the complex. Silver-stained polyacrylamide gels, immunoblots, and autoradiographs confirmed the presence of subunits of vaccinia virus RNA polymerase, mRNA guanylyltransferase, and nucleoside triphosphate phosphohydrolase I, as well as additional unidentified polypeptides, in fractions with transcriptase activity. A possible role for the DNA-dependent ATPase was suggested by studies with ATP analogs with gamma-S or nonhydrolyzable beta-gamma-phosphodiester bonds. These analogs were used by vaccinia virus RNA polymerase to nonspecifically transcribe single-stranded DNA templates but did not support accurate transcription of early genes by the complex. Transcription also was sensitive to high concentrations of novobiocin; however, this effect could be attributed to inhibition of RNA polymerase or ATPase activities rather than topoisomerase.


1987 ◽  
Vol 7 (1) ◽  
pp. 7-14
Author(s):  
S S Broyles ◽  
B Moss

A high-molecular-weight protein complex that is capable of accurate transcription initiation and termination of vaccinia virus early genes without additional factors was demonstrated. The complex was solubilized by disruption of purified virions, freed of DNA by passage through a DEAE-cellulose column, and isolated by glycerol gradient sedimentation. All detectable RNA polymerase activity was associated with the transcription complex, whereas the majority of enzymes released from virus cores including mRNA (nucleoside-2'-O)methyltransferase, poly(A) polymerase, topoisomerase, nucleoside triphosphate phosphohydrolase II, protein kinase, and single-strand DNase sedimented more slowly. Activities corresponding to two enzymes, mRNA guanylyltransferase (capping enzyme) and nucleoside triphosphate phosphohydrolase I (DNA-dependent ATPase), partially sedimented with the complex. Silver-stained polyacrylamide gels, immunoblots, and autoradiographs confirmed the presence of subunits of vaccinia virus RNA polymerase, mRNA guanylyltransferase, and nucleoside triphosphate phosphohydrolase I, as well as additional unidentified polypeptides, in fractions with transcriptase activity. A possible role for the DNA-dependent ATPase was suggested by studies with ATP analogs with gamma-S or nonhydrolyzable beta-gamma-phosphodiester bonds. These analogs were used by vaccinia virus RNA polymerase to nonspecifically transcribe single-stranded DNA templates but did not support accurate transcription of early genes by the complex. Transcription also was sensitive to high concentrations of novobiocin; however, this effect could be attributed to inhibition of RNA polymerase or ATPase activities rather than topoisomerase.


2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Tatiana G. Senkevich ◽  
George C. Katsafanas ◽  
Andrea Weisberg ◽  
Lisa R. Olano ◽  
Bernard Moss

ABSTRACT Poxviruses replicate within the cytoplasm and encode proteins for DNA and mRNA synthesis. To investigate poxvirus replication and transcription from a new perspective, we incorporated 5-ethynyl-2′-deoxyuridine (EdU) into nascent DNA in cells infected with vaccinia virus (VACV). The EdU-labeled DNA was conjugated to fluor- or biotin-azide and visualized by confocal, superresolution, and transmission electron microscopy. Nuclear labeling decreased dramatically after infection, accompanied by intense labeling of cytoplasmic foci. The nascent DNA colocalized with the VACV single-stranded DNA binding protein I3 in multiple puncta throughout the interior of factories, which were surrounded by endoplasmic reticulum. Complexes containing EdU-biotin-labeled DNA cross-linked to proteins were captured on streptavidin beads. After elution and proteolysis, the peptides were analyzed by mass spectrometry to identify proteins associated with nascent DNA. The known viral replication proteins, a telomere binding protein, and a protein kinase were associated with nascent DNA, as were the DNA-dependent RNA polymerase and intermediate- and late-stage transcription initiation and elongation factors, plus the capping and methylating enzymes. These results suggested that the replicating pool of DNA is transcribed and that few if any additional viral proteins directly engaged in replication and transcription remain to be discovered. Among the host proteins identified by mass spectrometry, topoisomerases IIα and IIβ and PCNA were noteworthy. The association of the topoisomerases with nascent DNA was dependent on expression of the viral DNA ligase, in accord with previous proteomic studies. Further investigations are needed to determine possible roles for PCNA and other host proteins detected. IMPORTANCE Poxviruses, unlike many well-characterized animal DNA viruses, replicate entirely within the cytoplasm of animal cells, raising questions regarding the relative roles of viral and host proteins. We adapted newly developed procedures for click chemistry and iPOND (Isolation of proteins on nascent DNA) to investigate vaccinia virus (VACV), the prototype poxvirus. Nuclear DNA synthesis ceased almost immediately following VACV infection, followed swiftly by the synthesis of viral DNA within discrete cytoplasmic foci. All viral proteins known from genetic and proteomic studies to be required for poxvirus DNA replication were identified in the complexes containing nascent DNA. The additional detection of the viral DNA-dependent RNA polymerase and intermediate and late transcription factors provided evidence for a temporal coupling of replication and transcription. Further studies are needed to assess the potential roles of host proteins, including topoisomerases IIα and IIβ and PCNA, which were found associated with nascent DNA.


1990 ◽  
Vol 10 (10) ◽  
pp. 5562-5564
Author(s):  
S Buratowski ◽  
P A Sharp

RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro.


2006 ◽  
Vol 87 (3) ◽  
pp. 665-672 ◽  
Author(s):  
Samuel Cordey ◽  
Laurent Roux

For the non-segmented, negative-stranded RNA viruses, the mechanism controlling transcription or replication is still a matter of debate. To gain information about this mechanism and about the nature of the RNA polymerase involved, the length of an intervening sequence separating the 3′ end of Sendai virus minigenomes and a downstream transcription-initiation signal was increased progressively. It was found that transcription, as measured by green fluorescent protein (GFP) expression, decreased progressively in proportion to the increase in length of the intervening sequence. GFP expression correlated well with the levels of GFP mRNA in the cells, as measured by quantitative primer extension and by RNase protection. Thus, mRNA transcription was inversely proportional to the length of the inserted sequence. These data are evidence that the RNA polymerase initiating transcription at the downstream transcription signal somehow sees the distance separating this signal and the template 3′ extremity. Implication of this observation for the nature of the Sendai virus RNA polymerase and for the mechanism by which it synthesizes mRNAs or replication products is presented.


2009 ◽  
Vol 83 (23) ◽  
pp. 12018-12026 ◽  
Author(s):  
Zhilong Yang ◽  
Bernard Moss

ABSTRACT A multisubunit RNA polymerase (RPO) encoded by vaccinia virus (VACV), in conjunction with specific factors, transcribes early, intermediate, and late viral genes. However, an additional virus-encoded polypeptide referred to as the RPO-associated protein of 94 kDa (RAP94) is tightly bound to the RPO for the transcription of early genes. Unlike the eight RPO core subunits, RAP94 is synthesized exclusively at late times after infection. Furthermore, RAP94 is necessary for the packaging of RPO and other components needed for early transcription in assembling virus particles. The direct association of RAP94 with NPH I, a DNA-dependent ATPase required for transcription termination, and the multifunctional poly(A) polymerase small subunit/2′-O-methyltransferase/elongation factor was previously demonstrated. That RAP94 provides a structural and functional link between the core RPO and the VACV early transcription factor (VETF) has been suspected but not previously demonstrated. Using VACV recombinants that constitutively or inducibly express VETF subunits and RAP94 with affinity tags, we showed that (i) VETF associates only with RPO containing RAP94 in vivo and in vitro, (ii) the association of RAP94 with VETF requires both subunits of the latter, (iii) neither viral DNA nor other virus-encoded late proteins are required for the interaction of RAP94 with VETF and core RPO subunits, (iv) different domains of RAP94 bind VETF and core subunits of RPO, and (v) NPH I and VETF bind independently and possibly simultaneously to the N-terminal region of RAP94. Thus, RAP94 provides the bridge between the RPO and proteins needed for transcription initiation, elongation, and termination.


Sign in / Sign up

Export Citation Format

Share Document