scholarly journals Development of an In Vivo Assay To Identify Structural Determinants in Murine Leukemia Virus Reverse Transcriptase Important for Fidelity

2000 ◽  
Vol 74 (1) ◽  
pp. 312-319 ◽  
Author(s):  
Elias K. Halvas ◽  
Evguenia S. Svarovskaia ◽  
Vinay K. Pathak

ABSTRACT Error-prone DNA synthesis by retroviral reverse transcriptases (RTs) is a major contributor to variation in retroviral populations. Structural features of retroviral RTs that are important for accuracy of DNA synthesis in vivo are not known. To identify structural elements of murine leukemia virus (MLV) RT important for fidelity in vivo, we developed a D17-based encapsidating cell line (ANGIE P) which is designed to express the amphotropic MLV envelope. ANGIE P also contains an MLV-based retroviral vector (GA-1) which encodes a wild-type bacterial β-galactosidase gene (lacZ) and a neomycin phosphotransferase gene. Transfection of ANGIE P cells with wild-type or mutated MLV gag-pol expression constructs generated GA-1 virus that was able to undergo only one cycle of viral replication upon infection of D17 cells. The infected D17 cell clones were characterized by staining with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-Gal), and the frequencies of inactivating mutations in lacZ were quantified. Three mutations in the YVDD motif (V223M, V223S, and V223A) and two mutations in the RNase H domain (S526A and R657S) exhibited frequencies of lacZ inactivation 1.2- to 2.3-fold higher than that for the wild-type MLV RT (P < 0.005). Two mutations (V223I and Y598V) did not affect the frequency oflacZ inactivation. These results establish a sensitive in vivo assay for identification of structural determinants important for accuracy of DNA synthesis and indicate that several structural determinants may have an effect on the in vivo fidelity of MLV RT.

2001 ◽  
Vol 75 (23) ◽  
pp. 11365-11372 ◽  
Author(s):  
Lilin Lai ◽  
Hongmei Liu ◽  
Xiaoyun Wu ◽  
John C. Kappes

ABSTRACT Mutations in the IN domain of retroviral DNA may affect multiple steps of the virus life cycle, suggesting that the IN protein may have other functions in addition to its integration function. We previously reported that the human immunodeficiency virus type 1 IN protein is required for efficient viral DNA synthesis and that this function requires specific interaction with other viral components but not enzyme (integration) activity. In this report, we characterized the structure and function of the Moloney murine leukemia virus (MLV) IN protein in viral DNA synthesis. Using an MLV vector containing green fluorescent protein as a sensitive reporter for virus infection, we found that mutations in either the catalytic triad (D184A) or the HHCC motif (H61A) reduced infectivity by approximately 1,000-fold. Mutations that deleted the entire IN (ΔIN) or 34 C-terminal amino acid residues (Δ34) were more severely defective, with infectivity levels consistently reduced by 10,000-fold. Immunoblot analysis indicated that these mutants were similar to wild-type MLV with respect to virion production and proteolytic processing of the Gag and Pol precursor proteins. Using semiquantitative PCR to analyze viral cDNA synthesis in infected cells, we found the Δ34 and ΔIN mutants to be markedly impaired while the D184A and H61A mutants synthesized cDNA at levels similar to the wild type. The DNA synthesis defect was rescued by complementing the Δ34 and ΔIN mutants intrans with either wild-type IN or the D184A mutant IN, provided as a Gag-IN fusion protein. However, the DNA synthesis defect of ΔIN mutant virions could not be complemented with the Δ34 IN mutant. Taken together, these analyses strongly suggested that the MLV IN protein itself is required for efficient viral DNA synthesis and that this function may be conserved among other retroviruses.


2003 ◽  
Vol 77 (9) ◽  
pp. 5275-5285 ◽  
Author(s):  
Sharon J. Schultz ◽  
Miaohua Zhang ◽  
James J. Champoux

ABSTRACT Successful generation, extension, and removal of the plus-strand primer is integral to reverse transcription. For Moloney murine leukemia virus, primer removal at the RNA/DNA junction leaves the 3′ terminus of the plus-strand primer abutting the downstream plus-strand DNA, but this 3′ terminus is not efficiently reutilized for another round of extension. The RNase H cleavage to create the plus-strand primer might similarly result in the 3′ terminus of this primer abutting downstream RNA, yet efficient initiation must occur to synthesize the plus-strand DNA. We hypothesized that displacement synthesis, RNase H activity, or both must participate to initiate plus-strand DNA synthesis. Using model hybrid substrates and RNase H-deficient reverse transcriptases, we found that displacement synthesis alone did not efficiently extend the plus-strand primer at a nick with downstream RNA. However, specific cleavage sites for RNase H were identified in the sequence immediately following the 3′ end of the plus-strand primer. During generation of the plus-strand primer, cleavage at these sites generated a gap. When representative gaps separated the 3′ terminus of the plus-strand primer from downstream RNA, primer extension significantly improved. The contribution of RNase H to the initiation of plus-strand DNA synthesis was confirmed by comparing the effects of downstream RNA versus DNA on plus-strand primer extension by wild-type reverse transcriptase. These data suggest a model in which efficient initiation of plus-strand synthesis requires the generation of a gap immediately following the plus-strand primer 3′ terminus.


1998 ◽  
Vol 72 (7) ◽  
pp. 5905-5911 ◽  
Author(s):  
Guangxia Gao ◽  
Stephen P. Goff

ABSTRACT Reverse transcriptase (RT) plays a critical role in retrovirus replication, directing the synthesis of a double- stranded DNA copy of the viral RNA genome. We have previously described a mutant RT of the Moloney murine leukemia virus in which F155 was replaced by valine, and we demonstrated that this substitution allowed the enzyme to incorporate ribonucleotides to form RNA while still retaining its normal ability to incorporate deoxyribonucleotides to form DNA. When introduced into the viral genome, this mutation rendered the virus incapable of replication. Characterization of the mutant virus revealed that the enzyme was still active and able to synthesize minus-strand strong stop DNA and some longer products but failed to make full-length minus-strand DNA. We propose that the failure of the enzyme to complete DNA synthesis in vivo resulted from its ability to incorporate ribonucleotides into the products, which served as inhibitors for DNA synthesis. We also tested seven other amino acid residues for their abilities to substitute for F155 in virus replication; of these, only tyrosine could support virus replication. In an attempt to select for second-site suppressor mutations, the F155V mutant was subjected to random mutagenesis and was used as a parent for the isolation of revertant viruses. Two independent revertants were found to have changed the valine residue at position 155 back to the wild- type phenylalanine. These results suggest that an aromatic ring at this position is important for virus replication.


2001 ◽  
Vol 75 (13) ◽  
pp. 6212-6217 ◽  
Author(s):  
Andrew G. Campbell

ABSTRACT A 157-amino-acid fragment of Moloney murine leukemia virus reverse transcriptase encoding RNase H is shown to rescue the growth-defective phenotype of an Escherichia coli mutant. In vitro assays of the recombinant wild-type protein purified from the conditionally defective mutant confirm that it is catalytically active. Mutagenesis of one of the presumptive RNase H-catalytic residues results in production of a protein variant incapable of rescue and which lacks activity in vitro. Analyses of additional active site mutants demonstrate that their encoded variant proteins lack robust activity yet are able to rescue the bacterial mutant. These results suggest that genetic complementation may be useful for in vivo screening of mutant viral RNase H gene fragments and in evaluating their function under conditions that more closely mimic physiological conditions. The rescue system may also be useful in verifying the functional outcomes of mutations based on protein structural predictions and modeling.


2002 ◽  
Vol 76 (16) ◽  
pp. 8360-8373 ◽  
Author(s):  
David Lim ◽  
Marianna Orlova ◽  
Stephen P. Goff

ABSTRACT Both the RNase H domain of Moloney murine leukemia virus (Mo-MLV) reverse transcriptase (RT) and Escherichia coli RNase H possess a positively charged α-helix (C helix) and a loop that are not present in the RNase H domains of human immunodeficiency virus (HIV) RT or avian sarcoma virus RT. Although a mutant Mo-MLV RT lacking the C helix (ΔC RT) retains DNA polymerase activity on homopolymeric substrates and partial RNase H activity, reverse transcription of the viral RNA genome in vivo is defective. To identify the essential features of the C helix, a panel of Mo-MLV RT mutants was generated. Analyses of these mutant viruses revealed the importance of residues H594, I597, R601, and G602. The mutants were tested for their ability to synthesize viral DNA after acute infections and to form proper 5′ and 3′ viral DNA ends. The mutant RTs were tested in vitro for exogenous RT activity, minus-strand strong-stop DNA synthesis in endogenous RT reactions, nonspecific RNase H activity, and finally, proper cleavage at the polypurine tract-U3 junction. The R601A mutant was the most defective mutant both in vivo and in vitro and possessed very little RNase H activity. The H594A, I597A, and G602A mutants had significant reductions in RNase H activity and in their rates of viral replication. Many of the mutants formed improper viral DNA ends and were less efficient in PPT-U3 recognition and cleavage in vitro. The data show that the C helix plays a crucial role for overall RNase H cleavage activity. The data also suggest that the C helix may play an important role in polypurine tract recognition and proper formation of the plus-strand DNA's 5′ end.


2002 ◽  
Vol 76 (15) ◽  
pp. 7473-7484 ◽  
Author(s):  
Wen-hui Zhang ◽  
Carey K. Hwang ◽  
Wei-Shau Hu ◽  
Robert J. Gorelick ◽  
Vinay K. Pathak

ABSTRACT In vitro studies have indicated that retroviral nucleocapsid (NC) protein facilitates both DNA synthesis by reverse transcriptase (RT) and annealing of the nascent DNA with acceptor template. Increasing the rate of DNA synthesis is expected to reduce the frequency of RT template switching, whereas annealing the nascent DNA with acceptor template promotes template switching. We performed a mutational analysis of the murine leukemia virus (MLV) NC zinc finger domain to study its effect on RT template switching in vivo and to explore the role of NC during reverse transcription. The effects of NC mutations on RT template switching were determined by using a previously described in vivo direct-repeat deletion assay. A trans-complementation assay was also developed in which replication-defective NC mutants were rescued by coexpression of replication-defective RT mutants that provided wild-type NC in trans. We found that mutations in the MLV NC zinc finger domain increased the frequency of template switching approximately twofold. When a predicted stem-loop RNA secondary structure was introduced into the template RNA, the template-switching frequency increased 5-fold for wild-type NC and further increased up to an additional 6-fold for NC zinc finger domain mutants, resulting in an overall increase of as much as 30-fold. Thus, wild-type NC increased the efficiency with which RT was able to reverse transcribe through regions of RNA secondary structure that might serve as RT pause sites. These results provide the first in vivo evidence that NC enhances the rate of DNA synthesis by RT in regions of the template possessing stable RNA secondary structure.


Sign in / Sign up

Export Citation Format

Share Document