scholarly journals A Novel Mechanism of Resistance to Mouse Mammary Tumor Virus Infection

2000 ◽  
Vol 74 (6) ◽  
pp. 2752-2759 ◽  
Author(s):  
Tatyana V. Golovkina

ABSTRACT Exogenous mouse mammary tumor virus (MMTV) is carried from the gut of suckling pups to the mammary glands by lymphocytes and induces mammary gland tumors. MMTV-induced tumor incidence in inbred mice of different strains ranges from 0 to as high as 100%. For example, mice of the C3H/HeN strain are highly susceptible, whereas mice of the I/LnJ strain are highly resistant. Of the different factors that together determine the susceptibility of mice to development of MMTV-induced mammary tumors, genetic elements play a major role, although very few genes that determine a susceptibility-resistance phenotype have been identified so far. Our data indicate that MMTV fails to infect mammary glands in I/LnJ mice foster nursed on viremic C3H/HeN females, even though the I/LnJ mammary tissue is not refractory to MMTV infection. Lymphocytes from fostered I/LnJ mice contained integrated MMTV proviruses and shed virus but failed to establish infection in the mammary glands of susceptible syngeneic (I × C3H.JK)F1 females. Based on the susceptible-resistant phenotype distribution in N2 females, both MMTV mammary gland infection and mammary gland tumor development in I/LnJ mice are controlled by a single locus.

Development ◽  
1998 ◽  
Vol 125 (10) ◽  
pp. 1921-1930 ◽  
Author(s):  
E.C. Kordon ◽  
G.H. Smith

Any epithelial portion of a normal mouse mammary gland can reproduce an entire functional gland when transplanted into an epithelium-free mammary fat pad. Mouse mammary hyperplasias and tumors are clonal dominant populations and probably represent the progeny of a single transformed cell. Our study provides evidence that single multipotent stem cells positioned throughout the mature fully developed mammary gland have the capacity to produce sufficient differentiated progeny to recapitulate an entire functional gland. Our evidence also demonstrates that these stem cells are self-renewing and are found with undiminished capacities in the newly regenerated gland. We have taken advantage of an experimental model where mouse mammary tumor virus infects mammary epithelial cells and inserts a deoxyribonucleic acid copy(ies) of its genome during replication. The insertions occur randomly within the somatic genome. CzechII mice have no endogenous nucleic acid sequence homology with mouse mammary tumor virus; therefore all viral insertions may be detected by Southern analysis provided a sufficient number of cells contain a specific insertional event. Transplantation of random fragments of infected CzechII mammary gland produced clonal-dominant epithelial populations in epithelium-free mammary fat pads. Serial transplantation of pieces of the clonally derived outgrowths produced second generation glands possessing the same viral insertion sites providing evidence for self-renewal of the original stem cell. Limiting dilution studies with cell cultures derived from third generation clonal outgrowths demonstrated that three multipotent but distinct mammary epithelial progenitors were present in clonally derived mammary epithelial populations. Estimation of the potential number of multipotent epithelial cells that may be evolved from an individual mammary-specific stem cell by self-renewal is in the order of 10(12)-10(13). Therefore, one stem cell might easily account for the renewal of mammary epithelium over several transplant generations.


1999 ◽  
Vol 73 (1) ◽  
pp. 368-376 ◽  
Author(s):  
Wei Qin ◽  
Tatyana V. Golovkina ◽  
Tao Peng ◽  
Irene Nepomnaschy ◽  
Valeria Buggiano ◽  
...  

ABSTRACT Mouse mammary tumor virus (MMTV) infects both lymphoid tissue and lactating mammary gland during its infectious cycle, but some endogenous MMTVs are transcribed only in lymphoid cells. We found a lymphoid cell-specific endogenous MMTV that was converted to a milk-borne, infectious virus through recombination with an exogenously transmitted MMTV. The changed expression pattern correlated with the alteration of a single base pair in the long terminal repeat of the lymphoid cell-specific virus. Transgenic mice with the element from either the milk-borne or lymphoid cell-specific virus upstream of the chloramphenicol acetyltransferase reporter gene showed the same pattern of expression as the virus from which the regulatory sequences were derived. Electrophoretic mobility shift assays with mammary cell extracts showed that the site from the milk-borne virus was preferentially bound by a prolactin-inducible factor that poorly bound the altered site from the lymphoid cell-specific virus. The complex that formed on the milk-borne virus-specific oligonucleotide supershifted with anti-Stat5b antibody. Mice lacking either Stat5a or Stat5b had dramatically reduced levels of MMTV transcripts in mammary gland but not in lymphoid tissue. Thus, a member of the STAT family of transcription factors is involved in the tissue-specific expression of mouse mammary tumor virus in vivo. This is the first example of the involvement of a member of the STAT family of transcription factors in the control of tissue-specific expression.


2002 ◽  
Vol 70 (7) ◽  
pp. 3701-3706 ◽  
Author(s):  
Olivier Gorgette ◽  
Alexandre Existe ◽  
Mariama Idrissa Boubou ◽  
Sébastien Bagot ◽  
Jean-Louis Guénet ◽  
...  

ABSTRACT Plasmodium berghei ANKA induces a fatal neurological syndrome known as cerebral malaria (CM) in susceptible mice. Host genetic elements are among the key factors determining susceptibility or resistance to CM. Analysis of mice of the same H-2 haplotype revealed that mouse mammary tumor virus 7 (MTV-7) integration into chromosome 1 is one of the key factors associated with resistance to neurological disease during P. berghei ANKA infection. We investigated this phenomenon by infecting a series of recombinant inbred mice (CXD2), derived from BALB/c (susceptible to CM) and DBA/2 (resistant to CM) mice, with P. berghei ANKA. We observed differences in susceptibility to CM induced by this Plasmodium strain. Mice with the MTV-7 sequence in their genome were resistant to CM, whereas those without integration of this gene were susceptible. Thus, an integrated proviral open reading frame or similar genomic sequences may confer protection against neuropathogenesis during malaria, at least in mice.


Sign in / Sign up

Export Citation Format

Share Document