scholarly journals Abundant Early Expression of gpUL4 from a Human Cytomegalovirus Mutant Lacking a Repressive Upstream Open Reading Frame

2001 ◽  
Vol 75 (15) ◽  
pp. 7188-7192 ◽  
Author(s):  
John P. Alderete ◽  
Stephanie J. Child ◽  
Adam P. Geballe

ABSTRACT The human cytomegalovirus UL4 gene encodes a 48-kDa glycoprotein, expression of which is repressed at the translational level by a short upstream open reading frame (uORF2) within the UL4 transcript leader. Mutation of the uORF2 initiation codon in the viral genome eliminates ribosomal stalling at the uORF2 termination site, resulting in early and abundant gpUL4 protein synthesis. This mutation does not appear to affect viral replication kinetics in human fibroblasts. These results reveal that the unusual uORF2 inhibitory mechanism is a principal determinant of the abundance and timing of gpUL4 expression but is nonessential for replication in cell culture.

2002 ◽  
Vol 22 (24) ◽  
pp. 8562-8570 ◽  
Author(s):  
Deanna M. Janzen ◽  
Lyudmila Frolova ◽  
Adam P. Geballe

ABSTRACT Expression of the human cytomegalovirus UL4 gene is inhibited by translation of a 22-codon-upstream open reading frame (uORF2). The peptide product of uORF2 acts in a sequence-dependent manner to inhibit its own translation termination, resulting in persistence of the uORF2 peptidyl-tRNA linkage. Consequently, ribosomes stall at the uORF2 termination codon and obstruct downstream translation. Since termination appears to be the critical step affected by translation of uORF2, we examined the role of eukaryotic release factors 1 and 3 (eRF1 and eRF3) in the inhibitory mechanism. In support of the hypothesis that an interaction between eRF1 and uORF2 contributes to uORF2 inhibitory activity, specific residues in each protein, glycines 183 and 184 of the eRF1 GGQ motif and prolines 21 and 22 of the uORF2 peptide, were found to be necessary for full inhibition of downstream translation. Immunoblot analyses revealed that eRF1, but not eRF3, accumulated in the uORF2-stalled ribosome complex. Finally, increased puromycin sensitivity was observed after depletion of eRF1 from the stalled ribosome complex, consistent with inhibition of peptidyl-tRNA hydrolysis resulting from an eRF1-uORF2 peptidyl-tRNA interaction. These results reveal the paradoxical potential for interactions between a nascent peptide and eRF1 to obstruct the translation termination cascade.


2002 ◽  
Vol 76 (3) ◽  
pp. 1043-1050 ◽  
Author(s):  
Jill T. Bechtel ◽  
Thomas Shenk

ABSTRACT The human cytomegalovirus UL47 open reading frame encodes a 110-kDa protein that is a component of the virion tegument. We have constructed a cytomegalovirus mutant, ADsubUL47, in which the central portion of the UL47 open reading frame has been replaced by two marker genes. The mutant replicated to titers 100-fold lower than those for wild-type virus after infection at either a high or a low input multiplicity in primary human fibroblasts but was substantially complemented on cells expressing UL47 protein. A revertant virus in which the mutation was repaired, ADrevUL47, replicated with wild-type kinetics. Mutant virions lacked UL47 protein and contained reduced amounts of UL48 protein. The mutant was found to be less infectious than wild-type virus, and a defect very early in the replication cycle was observed. Transcription of the viral immediate-early 1 gene was delayed by 8 to 10 h. However, this delay was not the result of a defect in virus entry or of the inability of virion proteins to transactivate the major immediate-early promoter. We also show that the UL47 protein coprecipitated with the UL48 and UL69 tegument proteins and the UL86-encoded major capsid protein. We propose that a UL47-containing complex is involved in the release of viral DNA from the disassembling virus particle and that the loss of UL47 protein causes this process to be delayed.


1999 ◽  
Vol 73 (10) ◽  
pp. 8330-8337 ◽  
Author(s):  
John P. Alderete ◽  
Sohail Jarrahian ◽  
Adam P. Geballe

ABSTRACT The human cytomegalovirus (HCMV) gpUL4 mRNA contains a 22-codon upstream open reading frame (uORF2), the peptide product of which represses downstream translation by blocking translation termination at its own stop codon and by causing ribosomes to stall on the mRNA. A distinctive feature of this unusual mechanism is its strict dependence on the uORF2 peptide sequence. To delineate sequence elements that function in the inhibitory mechanism, deletions and missense mutations affecting the previously uncharacterized amino-terminal region of uORF2 were analyzed in transient-transfection and infection assays. These experiments identified multiple codons in this region that are necessary for inhibition of downstream translation by uORF2 and, in conjunction with previous results, demonstrated that amino acids dispersed throughout the uORF2 peptide participate in the repressive mechanism. In contrast to the highly conserved carboxy terminus, the amino-terminal portion of the uORF2 peptide is polymorphic. A survey of uORF2 sequences in HCMV clinical isolates revealed that although most have uORF2 sequences that are predicted to retain the uORF2 inhibitory activity, ∼15% contain polymorphisms at codons that are essential for full inhibition by uORF2. Consistent with predictions based on analyses of engineered mutations, two viral isolates with uORF2 sequences that do not inhibit downstream translation in transfection assays expressed much more gpUL4 protein but similar levels of UL4 mRNA compared to the levels produced by the prototypic laboratory strain HCMV (Towne) and another clinical isolate with an inhibitory variant uORF2. These results demonstrate that uORF2 is polymorphic in sequence and repressive activity and suggest that the uORF2 regulatory mechanism, although prevalent among natural HCMV isolates, is not absolutely essential for viral replication.


2009 ◽  
Vol 150 (3) ◽  
pp. 1356-1367 ◽  
Author(s):  
Fatemeh Rahmani ◽  
Maureen Hummel ◽  
Jolanda Schuurmans ◽  
Anika Wiese-Klinkenberg ◽  
Sjef Smeekens ◽  
...  

2016 ◽  
Vol 90 (13) ◽  
pp. 5860-5875 ◽  
Author(s):  
Eva Maria Borst ◽  
Rudolf Bauerfeind ◽  
Anne Binz ◽  
Thomas Min Stephan ◽  
Sebastian Neuber ◽  
...  

ABSTRACTSeveral essential viral proteins are proposed to participate in genome encapsidation of human cytomegalovirus (HCMV), among them pUL77 and pUL93, which remain largely uncharacterized. To gain insight into their properties, we generated an HCMV mutant expressing a pUL77-monomeric enhanced green fluorescent protein (mGFP) fusion protein and a pUL93-specific antibody. Immunoblotting demonstrated that both proteins are incorporated into capsids and virions. Conversely to data suggesting internal translation initiation sites within the UL93 open reading frame (ORF), we provide evidence that pUL93 synthesis commences at the first start codon. In infected cells, pUL77-mGFP was found in nuclear replication compartments and dot-like structures, colocalizing with capsid proteins. Immunogold labeling of nuclear capsids revealed that pUL77 is present on A, B, and C capsids. Pulldown of pUL77-mGFP revealed copurification of pUL93, indicating interaction between these proteins, which still occurred when capsid formation was prevented. Correct subnuclear distribution of pUL77-mGFP required pUL93 as well as the major capsid protein (and thus probably the presence of capsids), but not the tegument protein pp150 or the encapsidation protein pUL52, demonstrating that pUL77 nuclear targeting occurs independently of the formation of DNA-filled capsids. When pUL77 or pUL93 was missing, generation of unit-length genomes was not observed, and only empty B capsids were produced. Taken together, these results show that pUL77 and pUL93 are capsid constituents needed for HCMV genome encapsidation. Therefore, the task of pUL77 seems to differ from that of its alphaherpesvirus orthologue pUL25, which exerts its function subsequent to genome cleavage-packaging.IMPORTANCEThe essential HCMV proteins pUL77 and pUL93 were suggested to be involved in viral genome cleavage-packaging but are poorly characterized both biochemically and functionally. By producing a monoclonal antibody against pUL93 and generating an HCMV mutant in which pUL77 is fused to a fluorescent protein, we show that pUL77 and pUL93 are capsid constituents, with pUL77 being similarly abundant on all capsid types. Each protein is required for genome encapsidation, as the absence of either pUL77 or pUL93 results in a genome packaging defect with the formation of empty capsids only. This distinguishes pUL77 from its alphaherpesvirus orthologue pUL25, which is enriched on DNA-filled capsids and exerts its function after the viral DNA is packaged. Our data for the first time describe an HCMV mutant with a fluorescent capsid and provide insight into the roles of pUL77 and pUL93, thus contributing to a better understanding of the HCMV encapsidation network.


2012 ◽  
Vol 63 (14) ◽  
pp. 5203-5221 ◽  
Author(s):  
Fulgencio Alatorre-Cobos ◽  
Alfredo Cruz-Ramírez ◽  
Celine A. Hayden ◽  
Claudia-Anahí Pérez-Torres ◽  
Anne-Laure Chauvin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document