scholarly journals Envelope Glycoprotein Incorporation, Not Shedding of Surface Envelope Glycoprotein (gp120/SU), Is the Primary Determinant of SU Content of Purified Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus

2002 ◽  
Vol 76 (11) ◽  
pp. 5315-5325 ◽  
Author(s):  
Elena Chertova ◽  
Julian W. Bess, ◽  
Bruce J. Crise ◽  
Raymond C. Sowder ◽  
Terra M. Schaden ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) particles typically contain small amounts of the surface envelope protein (SU), and this is widely believed to be due to shedding of SU from mature virions. We purified proteins from HIV-1 and SIV isolates using procedures which allow quantitative measurements of viral protein content and determination of the ratios of gag- and env-encoded proteins in virions. All of the HIV-1 and most of the SIV isolates examined contained low levels of envelope proteins, with Gag:Env ratios of approximately 60:1. Based on an estimate of 1,200 to 2,500 Gag molecules per virion, this corresponds to an average of between 21 and 42 SU molecules, or between 7 and 14 trimers, per particle. In contrast, some SIV isolates contained levels of SU at least 10-fold greater than SU from HIV-1 isolates. Quantification of relative amounts of SU and transmembrane envelope protein (TM) provides a means to assess the impact of SU shedding on virion SU content, since such shedding would be expected to result in a molar excess of TM over SU on virions that had shed SU. With one exception, viruses with sufficient SU and TM to allow quantification were found to have approximately equivalent molar amounts of SU and TM. The quantity of SU associated with virions and the SU:TM ratios were not significantly changed during multiple freeze-thaw cycles or purification through sucrose gradients. Exposure of purified HIV-1 and SIV to temperatures of 55°C or greater for 1 h resulted in loss of most of the SU from the virus but retention of TM. Incubation of purified virus with soluble CD4 at 37°C resulted in no appreciable loss of SU from either SIV or HIV-1. These results indicate that the association of SU and TM on the purified virions studied is quite stable. These findings suggest that incorporation of SU-TM complexes into the viral membrane may be the primary factor determining the quantity of SU associated with SIV and HIV-1 virions, rather than shedding of SU from mature virions.

2002 ◽  
Vol 76 (9) ◽  
pp. 4634-4642 ◽  
Author(s):  
Xinzhen Yang ◽  
Juliette Lee ◽  
Erin M. Mahony ◽  
Peter D. Kwong ◽  
Richard Wyatt ◽  
...  

ABSTRACT The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.


2003 ◽  
Vol 77 (15) ◽  
pp. 8237-8248 ◽  
Author(s):  
David R. M. Graham ◽  
Elena Chertova ◽  
Joanne M. Hilburn ◽  
Larry O. Arthur ◽  
James E. K. Hildreth

ABSTRACT Recent evidence suggests that human immunodeficiency virus type 1 (HIV-1) particles assemble and bud selectively through areas in the plasma membrane of cells that are highly enriched with glycosylphosphatidylinositol-anchored proteins and cholesterol, called lipid rafts. Since cholesterol is required to maintain lipid raft structure and function, we proposed that virion-associated cholesterol removal with the compound 2-hydroxy-propyl-β-cyclodextrin (β-CD) might be disruptive to HIV-1 and simian immunodeficiency virus (SIV). We examined the effect of β-CD on the structure and infectivity of cell-free virions. We found that β-CD inactivated HIV-1 and SIV in a dose-dependent manner and permeabilized the viral membranes, resulting in the loss of mature Gag proteins (capsid, matrix, nucleocapsid, p1, and p6) without loss of the envelope glycoproteins. SIV also lost reverse transcriptase (RT), integrase (IN), and viral RNA. IN appeared to be only slightly diminished in HIV-1, and viral RNA, RT, matrix, and nucleocapsid proteins were retained in HIV-1 but to a much lesser degree. Host proteins located internally in the virus (actin, moesin, and ezrin) and membrane-associated host proteins (major histocompatibility complex classes I and II) remained associated with the treated virions. Electron microscopy revealed that under conditions that permeabilized the viruses, holes were present in the viral membranes and the viral core structure was perturbed. These data provide evidence that an intact viral membrane is required to maintain mature virion core integrity. Since the viruses were not fixed before β-CD treatment and intact virion particles were recovered, the data suggest that virions may possess a protein scaffold that can maintain overall structure despite disruptions in membrane integrity.


2005 ◽  
Vol 79 (6) ◽  
pp. 3500-3508 ◽  
Author(s):  
Xinzhen Yang ◽  
Svetla Kurteva ◽  
Sandra Lee ◽  
Joseph Sodroski

ABSTRACT The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.


2010 ◽  
Vol 84 (9) ◽  
pp. 4840-4844 ◽  
Author(s):  
Qiujia Shao ◽  
Yudi Wang ◽  
James E. K. Hildreth ◽  
Bindong Liu

ABSTRACT Proteasomal degradation of APOBEC3G is a critical step for human immunodeficiency virus type 1 (HIV-1) replication. However, the necessity for polyubiquitination of APOBEC3G in this process is still controversial. In this study, we showed that although macaque simian immunodeficiency virus (SIVmac) Vif is more stable than HIV-1 Vif in human cells, SIVmac Vif induces degradation of APBOEC3G as efficiently as HIV-1 Vif. Overexpression of APOBEC3G or lysine-free APOBEC3G stabilized HIV-1 Vif, indicating that APOBEC3G degradation is independent of the degradation of Vif. Furthermore, an in vivo polyubiquitination assay showed that lysine-free APOBEC3G was also polyubiquitinated. These data suggest that polyubiquitination of APOBEC3G, not that of HIV-1 Vif, is crucial for APOBEC3G degradation.


2006 ◽  
Vol 13 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Geoffrey J. Gorse ◽  
Ramona E. Simionescu ◽  
Gira B. Patel

ABSTRACT Effects of human immunodeficiency virus type 1 (HIV-1) recombinant envelope glycoprotein vaccines on cell-mediated immune (CMI) responses were assessed in HIV-1-infected patients. Asymptomatic, antiretroviral-treatment-naïve, HIV-1-infected patients with CD4+ T-cell counts greater than 400/μl received multiple intramuscular injections of HIV-1 IIIB recombinant envelope glycoprotein (rgp160) vaccine or HIV-1 MN recombinant envelope glycoprotein (rgp120) vaccine (eight patients, referred to as the HIV-1 vaccinees) or placebo or hepatitis B vaccine (three patients, referred to as the controls). Lymphocyte proliferation in response to HIV-1 envelope glycoproteins, both homologous and heterologous to the HIV-1 immunogens, was absent prior to study treatment in all patients but increased significantly during the vaccination series and after the final vaccination in HIV-1 vaccinees (P < 0.05) and remained absent in control patients. In flow cytometric analyses of intracellular cytokines, T-cell receptor stimulation with an anti-CD3 antibody induced gamma interferon (IFN-γ) expression by activated CD4+ and CD8+ lymphocytes at greater frequencies than did stimulation with recombinant envelope glycoprotein and p24 of HIV-1 (P< 0.05). Mean frequencies of HIV-1 envelope glycoprotein-stimulated, activated intracellularIFN-γ-producing CD4+ and CD8+ lymphocytes and of interleukin-2-producing CD4+ lymphocytes did not increase after vaccination, but cytokine-producing cells were detectable in some patients. Comparing pre- to post-HIV-1 vaccination time points, changes in frequencies of activated, IFN-γ-producing CD4+ cells correlated inversely with changes in lymphocyte proliferation in response to recombinant envelope glycoprotein in HIV-1 vaccinees (P < 0.05). Increased CMI responses to HIV-1 envelope glycoprotein measured by lymphocyte proliferation were associated with HIV-1 recombinant envelope glycoprotein vaccines.


2001 ◽  
Vol 75 (9) ◽  
pp. 4430-4434 ◽  
Author(s):  
James P. McGettigan ◽  
Heather D. Foley ◽  
Igor M. Belyakov ◽  
Jay A. Berzofsky ◽  
Roger J. Pomerantz ◽  
...  

ABSTRACT Novel viral vectors that are able to induce both strong and long-lasting immune responses may be required as effective vaccines for human immunodeficiency virus type 1 (HIV-1) infection. Our previous experiments with a replication-competent vaccine strain-based rabies virus (RV) expressing HIV-1 envelope protein from a laboratory-adapted HIV-1 strain (NL4–3) and a primary HIV-1 isolate (89.6) showed that RV-based vectors are excellent for B-cell priming. Here we report that cytotoxic T-lymphocyte (CTL) responses against HIV-1 gp160 are induced by recombinant RVs. Our results indicated that a single inoculation of mice with an RV expressing HIV-1 gp160 induced a solid and long-lasting memory CTL response specific for HIV-1 envelope protein. Moreover, CTLs from immunized mice were not restricted to the homologous HIV-1 envelope protein and were able to cross-kill target cells expressing HIV-1 gp160 from heterologous HIV-1 strains. These studies further suggest promise for RV-based vectors to elicit a persistent immune response against HIV-1 and their potential utility as efficacious anti-HIV-1 vaccines.


2003 ◽  
Vol 77 (17) ◽  
pp. 9295-9304 ◽  
Author(s):  
Caroline Goujon ◽  
Loraine Jarrosson-Wuilleme ◽  
Jeanine Bernaud ◽  
Dominique Rigal ◽  
Jean-Luc Darlix ◽  
...  

ABSTRACT Heterologous lentiviral vectors (LVs) represent a way to address safety concerns in the field of gene therapy by decreasing the possibility of genetic recombination between vector and packaging constructs and the generation of replication-competent viruses. Using described LVs based on human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus MAC251 (SIVMAC251), we asked whether heterologous virion particles in which trans-acting factors belonged to HIV-1 and cis elements belonged to SIVMAC251 (HIV-siv) would behave as parental homologous vectors in all cell types. To our surprise, we found that although the heterologous HIV-siv vector was as infectious as its homologous counterpart in most human cells, it was defective in the transduction of dendritic cells (DCs) and, to a lesser extent, macrophages. In DCs, the main postentry defect was observed in the formation of two-long-terminal-repeat circles, despite the fact that full-length proviral DNA was being synthesized and was associated with the nucleus. Taken together, our data suggest that heterologous HIV-siv vectors display a cell-dependent infectivity defect, most probably at a post-nuclear entry migration step. As homologous HIV and SIV vectors do transduce DCs, we believe that these results underscore the importance of a conserved interaction between cis elements and trans-acting viral factors that is lost or suboptimal in heterologous vectors and essential only in the transduction of certain cell types. For gene therapy purposes, these findings indicate that the cellular tropism of LVs can be modulated not only through the use of distinct envelope proteins or tissue-specific promoters but also through the specific combinatorial use of packaging and transfer vector constructs.


2015 ◽  
Vol 89 (16) ◽  
pp. 8643-8650 ◽  
Author(s):  
Xiaoying Shen ◽  
Ryan Duffy ◽  
Robert Howington ◽  
Alethea Cope ◽  
Shanmugalakshmi Sadagopal ◽  
...  

To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type 1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the notable exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env responses were dominated by V2 regardless of the vaccine regimen.


2004 ◽  
Vol 48 (9) ◽  
pp. 3483-3490 ◽  
Author(s):  
Michael J. Hofman ◽  
Joanne Higgins ◽  
Timothy B. Matthews ◽  
Niels C. Pedersen ◽  
Chalet Tan ◽  
...  

ABSTRACT The specificity of nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for the RT of human immunodeficiency virus type 1 (HIV-1) has prevented the use of simian immunodeficiency virus (SIV) in the study of NNRTIs and NNRTI-based highly active antiretroviral therapy. However, a SIV-HIV-1 chimera (RT-SHIV), in which the RT from SIVmac239 was replaced with the RT-encoding region from HIV-1, is susceptible to NNRTIs and is infectious to rhesus macaques. We have evaluated the antiviral activity of efavirenz against RT-SHIV and the emergence of efavirenz-resistant mutants in vitro and in vivo. RT-SHIV was susceptible to efavirenz with a mean effective concentration of 5.9 ± 4.5 nM, and RT-SHIV variants selected with efavirenz in cell culture displayed 600-fold-reduced susceptibility. The efavirenz-resistant mutants of RT-SHIV had mutations in RT similar to those of HIV-1 variants that were selected under similar conditions. Efavirenz monotherapy of RT-SHIV-infected macaques produced a 1.82-log-unit decrease in plasma viral-RNA levels after 1 week. The virus load rebounded within 3 weeks in one treated animal and more slowly in a second animal. Virus isolated from these two animals contained the K103N and Y188C or Y188L mutations. The RT-SHIV-rhesus macaque model may prove useful for studies of antiretroviral drug combinations that include efavirenz.


Sign in / Sign up

Export Citation Format

Share Document