scholarly journals Role of a Highly Conserved NH2-Terminal Domain of the Human Parainfluenza Virus Type 3 RNA Polymerase

2002 ◽  
Vol 76 (16) ◽  
pp. 8101-8109 ◽  
Author(s):  
Achut G. Malur ◽  
Suresh K. Choudhary ◽  
Bishnu P. De ◽  
Amiya K. Banerjee

ABSTRACT The RNA polymerase complex of human parainfluenza virus type 3 (HPIV 3), a member of the family Paramyxoviridae, is composed of two virally encoded polypeptides: a multifunctional large protein (L, 255 kDa) and a phosphoprotein (P, 90 kDa). From extensive deduced amino acid sequence analyses of the cDNA clones of a number of L proteins of nonsegmented negative-strand RNA viruses, a cluster of high-homology sequence segments have been identified within the body of the L proteins. Here, we have focused on the NH2-terminal domain of HPIV 3 L protein that is also highly conserved. Following mutational analyses within this domain, we examined the ability of the mutant L proteins to (i) transcribe an HPIV 3 minireplicon, (ii) transcribe the viral RNA in vitro using the HPIV 3 nucleocapsid RNA template, and (iii) interact with HPIV 3 P protein. Our results demonstrate that the first 15 amino acids of the NH2-terminal domain spanning a highly conserved motif is directly involved in transcription of the genome RNA and in forming a functional complex with the P protein. Substitution of eight nonconserved amino acids within this domain by the corresponding Sendai virus L protein residues yielded mutants with variable transcriptional activities. However, one mutant in which all eight amino acids were replaced with the corresponding residues of Sendai virus L protein failed to both transcribe the minireplicon and interact with HPIV 3 P and the Sendai virus P protein. The possible functional significance of the NH2-terminal domain of paramyxovirus L protein is discussed.

1996 ◽  
Vol 77 (10) ◽  
pp. 2465-2469 ◽  
Author(s):  
T. Pelet ◽  
J.-B. Marq ◽  
Y. Sakai ◽  
S. Wakao ◽  
H. Gotoh ◽  
...  

2009 ◽  
Vol 53 (9) ◽  
pp. 3942-3951 ◽  
Author(s):  
Makiko Watanabe ◽  
Vasiliy P. Mishin ◽  
Scott A. Brown ◽  
Charles J. Russell ◽  
Kelli Boyd ◽  
...  

ABSTRACT Human parainfluenza virus type 3 (hPIV-3) is a major respiratory tract pathogen that affects young children, but no vaccines or antiviral drugs against it have yet been developed. We developed a mouse model to evaluate the efficacies of the novel parainfluenza virus hemagglutinin-neuraminidase (HN) inhibitors BCX 2798 and BCX 2855 against a recombinant Sendai virus (rSeV) in which the fusion (F) and HN surface glycoproteins (FHN) were replaced by those of hPIV-3 [rSeV(hPIV-3FHN)]. In the prophylaxis model, 129X1/SvJ mice were infected with a 90% or 20% lethal dose of the virus and were treated intranasally for 5 days with 10 mg/kg of body weight/day of either compound starting 4 h before infection. Prophylactic treatment of the mice with either compound did not prevent their death in a 90% lethality model of rSeV(hPIV-3FHN) infection. However, it significantly reduced the lung virus titers, the amount of weight lost, and the rate of mortality in mice infected with a 20% lethal virus dose. In the therapy model, mice were infected with a nonlethal dose of the virus (100 PFU/mouse) and were treated intranasally with 1 or 10 mg/kg/day of either compound for 5 days starting at 24 or 48 h postinfection. Treatment of the mice with either compound significantly reduced the virus titer in the lungs, subsequently causing a reduction in the number of immune cells and the levels of cytokines in the bronchoalveolar lavage fluid and histopathologic changes in the airways. Our results indicate that BCX 2798 and BCX 2855 are effective inhibitors of hPIV-3 HN in our mouse model and may be promising candidates for the prophylaxis and treatment of hPIV-3 infection in humans.


1998 ◽  
Vol 72 (3) ◽  
pp. 1762-1768 ◽  
Author(s):  
Mario H. Skiadopoulos ◽  
Anna P. Durbin ◽  
Joanne M. Tatem ◽  
Shin-Lu Wu ◽  
Maribel Paschalis ◽  
...  

ABSTRACT Studies were initiated to define the genetic basis of the temperature-sensitive (ts), cold adaptation (ca), and attenuation (att) phenotypes of the human parainfluenza virus type 3 (PIV3) cp45 live attenuated vaccine candidate. Genetic data had previously suggested that the L polymerase protein of cp45, which contains three amino acid substitutions at positions 942, 992, and 1558, contributed to its temperature sensitivity (R. Ray, M. S. Galinski, B. R. Heminway, K. Meyer, F. K. Newman, and R. B. Belshe, J. Virol. 70:580–584, 1996; A. Stokes, E. L. Tierney, C. M. Sarris, B. R. Murphy, and S. L. Hall, Virus Res. 30:43–52, 1993). To study the individual and aggregate contributions that these amino acid substitutions make to the ts, att, and ca phenotypes of cp45, seven PIV3 recombinant viruses (three single, three double, and one triple mutant) representing all possible combinations of the three amino acid substitutions were recovered from full-length antigenomic cDNA and analyzed for their ts, att, and caphenotypes. None of the seven mutant recombinant PIVs was cold adapted. The substitutions at L protein amino acid positions 992 and 1558 each specified a 105-fold reduction in plaque formation in cell culture at 40°C, whereas the substitution at position 942 specified a 300-fold reduction. Thus, each of the three mutations contributes individually to the ts phenotype. The triple recombinant which possesses an L protein with all three mutations was almost as temperature sensitive as cp45, indicating that these mutations are the major contributors to the ts phenotype ofcp45. The three individual mutations in the L protein each contributed to restricted replication in the upper or lower respiratory tract of hamsters, and this likely contributes to the observed stability of the ts and att phenotypes ofcp45 during replication in vivo. Importantly, the recombinant virus possessing L protein with all three mutations was as restricted in replication as was the cp45 mutant in both the upper and lower respiratory tracts of hamsters, indicating that the L gene of the cp45 virus is a major attenuating component of this candidate vaccine.


Sign in / Sign up

Export Citation Format

Share Document