nucleotide insertions
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Manuel Ramírez ◽  
Alberto Martínez ◽  
Felipe Molina

The yeasts Torulaspora delbrueckii (Td) and Saccharomyces cerevisiae (Sc) may show a killer phenotype that is encoded in dsRNA M viruses (V-M), which require the helper activity of another dsRNA virus (V-LA or V-LBC) for replication. Recently, two TdV-LBCbarr genomes, which share sequence identity with ScV-LBC counterparts, were characterized by high-throughput sequencing (HTS). They also share some similar characteristics with Sc-LA viruses. This may explain why TdV-LBCbarr has helper capability to maintain M viruses, whereas ScV-LBC does not. We here analyze two stretches with low sequence identity (LIS I and LIS II) that were found in TdV-LBCbarr Gag-Pol proteins when comparing with the homologous regions of ScV-LBC. These stretches may result from successive nucleotide insertions or deletions (indels) that allow compensatory frameshift events required to maintain specific functions of the RNA-polymerase, while modifying other functions such as the ability to bind V-M (+)RNA for packaging. The presence of an additional frameshifting site in LIS I may ensure the synthesis of a certain amount of RNA-polymerase until the new compensatory indel appears. Additional 5′- and 3′-extra sequences were found beyond V-LBC canonical genomes. Most extra sequences showed high identity to some stretches of the canonical genomes and can form stem-loop structures. Further, the 3′-extra sequence of two ScV-LBC genomes contains rRNA stretches. The origin and possible functions of these extra sequences are here discussed.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1597
Author(s):  
Yurie Kida ◽  
Kosuke Okuya ◽  
Takeshi Saito ◽  
Junya Yamagishi ◽  
Aiko Ohnuma ◽  
...  

Highly pathogenic avian influenza viruses (HPAIVs) with H5 and H7 hemagglutinin (HA) subtypes are derived from their low pathogenic counterparts following the acquisition of multiple basic amino acids in their HA cleavage site. It has been suggested that consecutive adenine residues and a stem-loop structure in the viral RNA region that encodes the cleavage site are essential for the acquisition of the polybasic cleavage site. By using a reporter assay to detect non-templated nucleotide insertions, we found that insertions more frequently occurred in the RNA region (29 nucleotide-length) encoding the cleavage site of an H5 HA gene that was predicted to have a stem-loop structure containing consecutive adenines than in a mutated corresponding RNA region that had a disrupted loop structure with fewer adenines. In virus particles generated by using reverse genetics, nucleotide insertions that created additional codons for basic amino acids were found in the RNA region encoding the cleavage site of an H5 HA gene but not in the mutated RNA region. We confirmed the presence of virus clones with the ability to replicate without trypsin in a plaque assay and to cause lethal infection in chicks. These results demonstrate that the stem-loop structure containing consecutive adenines in HA genes is a key molecular determinant for the emergence of H5 HPAIVs.


Author(s):  
Mingyan Fang ◽  
Zheng Su ◽  
Hassan Abolhassani ◽  
Wei Zhang ◽  
Chongyi Jiang ◽  
...  

AbstractBoth DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.


2021 ◽  
Vol 99 (10) ◽  
pp. 60-65
Author(s):  
B. V. Nikonenko ◽  
T. L. Аzhikina ◽  
A. S. Grigorov ◽  
I. A. Linge ◽  
N. N. Logunova ◽  
...  

The objective of the study: to obtain a live attenuated strain and investigate its properties by multiple cultures of the virulent strain of Mycobacterium tuberculosis H37Rv.Subjects and Methods. The original virulent strain H37Rv was subcultured 70 times in 7H9 liquid medium. Genetic properties of the new strain, degree of avirulence, and vaccine properties were studied.Results. Mycobacteria of the new strain MtbBN lost their virulence to inbred mice. Eight mutations were identified by whole genome sequencing: single nucleotide insertions and deletions (in/del) distinguishing the MtbBN and H37Rv strains. The MtbBN strain demonstrated vaccine potential at the BCG level. Additionally, in some genetic models, the attenuated strain was highly effective in protecting inbred mice when infected with Mtb H37Rv as opposed to BCG.


2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Nora S. Martin ◽  
Sebastian E. Ahnert

Genotype–phenotype maps link genetic changes to their fitness effect and are thus an essential component of evolutionary models. The map between RNA sequences and their secondary structures is a key example and has applications in functional RNA evolution. For this map, the structural effect of substitutions is well understood, but models usually assume a constant sequence length and do not consider insertions or deletions. Here, we expand the sequence–structure map to include single nucleotide insertions and deletions by using the RNAshapes concept. To quantify the structural effect of insertions and deletions, we generalize existing definitions for robustness and non-neutral mutation probabilities. We find striking similarities between substitutions, deletions and insertions: robustness to substitutions is correlated with robustness to insertions and, for most structures, to deletions. In addition, frequent structural changes after substitutions also tend to be common for insertions and deletions. This is consistent with the connection between energetically suboptimal folds and possible structural transitions. The similarities observed hold both for genotypic and phenotypic robustness and mutation probabilities, i.e. for individual sequences and for averages over sequences with the same structure. Our results could have implications for the rate of neutral and non-neutral evolution.


2021 ◽  
Author(s):  
Martin Linster ◽  
Marcus G Mah ◽  
Dolyce HW Low ◽  
Zhuang Yan ◽  
Jayanthi Jayakumar ◽  
...  

Bats are a likely zoonotic reservoir for a range of human pathogens including endemic human coronaviruses and SARS-CoV-2. Despite the high burden caused by these viruses, the factors required for the establishment and ongoing transmission in humans are not well understood, hampering efforts for pandemic preparedness. To help understand those adaptations required to cross the species barrier, we serially passaged endemic human coronavirus 229E isolates in a newly established Rhinolophus (horseshoe bat) kidney cell line. Here we report extensive mutations, including deletions, in the virus genome that result in the loss of spike protein expression, while maintaining the capability to infect bat cells. While we observed a loss of infectivity of human cells for all viruses with spike deletions, one isolate (2613) with an insertion that results in an early stop codon, was recovered from human cells. Deep sequencing of isolate 2613 showed that the majority population had acquired additional nucleotide insertions in the spike resulting in an additional codon that restores spike function. Spike-independent replication of coronaviruses provides an alternative route for infection of host species that don't share common cell-entry receptors.


2021 ◽  
Author(s):  
Inyoung Kim ◽  
Sang Yoon Byun ◽  
Sangyeup Kim ◽  
Sangyoon Choi ◽  
Jinsung Noh ◽  
...  

Abstract Analyzing B cell receptor (BCR) repertoires is immensely useful in evaluating one’s immunological status. Conventionally, repertoire analysis methods have focused on comprehensive assessments of clonal compositions, including V(D)J segment usage, nucleotide insertions/deletions, and amino acid distributions. Here, we introduce a novel computational approach that applies deep-learning-based protein embedding techniques to analyze BCR repertoires. By selecting the most frequently occurring BCR sequences in a given repertoire and computing the sum of the vector representations of these sequences, we represent an entire repertoire as a 100-dimensional vector and eventually as a single data point in vector space. We demonstrate that this new approach enables us to not only accurately cluster BCR repertoires of coronavirus disease 2019 (COVID-19) patients and healthy subjects but also efficiently track minute changes in immune status over time as patients undergo treatment. Furthermore, using the distributed representations, we successfully trained an XGBoost classification model that achieved a mean accuracy rate of over 87% given a repertoire of CDR3 sequences.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Charleson Poovaiah ◽  
Lorelle Phillips ◽  
Barbara Geddes ◽  
Cathie Reeves ◽  
Mathias Sorieul ◽  
...  

Abstract Background To meet increasing demand for forest-based products and protect natural forests from further deforestation requires increased productivity from planted forests. Genetic improvement of conifers by traditional breeding is time consuming due to the long juvenile phase and genome complexity. Genetic modification (GM) offers the opportunity to make transformational changes in shorter time frames but is challenged by current genetically modified organism (GMO) regulations. Genome editing, which can be used to generate site-specific mutations, offers the opportunity to rapidly implement targeted improvements and is globally regulated in a less restrictive way than GM technologies. Results We have demonstrated CRISPR/Cas9 genome editing in P. radiata targeting a single-copy cell wall gene GUX1 in somatic embryogenic tissue and produced plantlets from the edited tissue. We generated biallelic INDELs with an efficiency of 15 % using a single gRNA. 12 % of the transgenic embryogenic tissue was edited when two gRNAs were used and deletions of up to 1.3 kb were identified. However, the regenerated plants did not contain large deletions but had single nucleotide insertions at one of the target sites. We assessed the use of CRISPR/Cas9 ribonucleoproteins (RNPs) for their ability to accomplish DNA-free genome editing in P. radiata. We chose a hybrid approach, with RNPs co-delivered with a plasmid-based selectable marker. A two-gRNA strategy was used which produced an editing efficiency of 33 %, and generated INDELs, including large deletions. Using the RNP approach, deletions found in embryogenic tissue were also present in the plantlets. But, all plants produced using the RNP strategy were monoallelic. Conclusions We have demonstrated the generation of biallelic and monoallelic INDELs in the coniferous tree P. radiata with the CRISPR/Cas9 system using plasmid expressed Cas9 gRNA and RNPs respectively. This opens the opportunity to apply genome editing in conifers to rapidly modify key traits of interest.


2021 ◽  
Author(s):  
Stephane Emond ◽  
Florian Hollfelder

Abstract Insertions and deletions (InDels) are among the most frequent changes observed in natural protein evolution, yet their potential has hardly been harnessed in directed evolution experiments. Here we describe the standard protocol for TRIAD (Transposition-based Random Insertion And Deletion mutagenesis), a simple and efficient Mu transposon mutagenesis approach for generating libraries of single InDel variants with one, two or three triplet nucleotide insertions or deletions. This method has recently been employed in three published examples of InDel-based directed evolution of proteins, including a phosphotriesterase, a scFv antibody and an ancestral luciferase.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dongbin Park ◽  
Yoonsoo Hahn

Abstract Background RNA viruses possess remarkable evolutionary versatility driven by the high mutability of their genomes. Frameshifting nucleotide insertions or deletions (indels), which cause the premature termination of proteins, are frequently observed in the coding sequences of various viral genomes. When a secondary indel occurs near the primary indel site, the open reading frame can be restored to produce functional proteins, a phenomenon known as the compensatory frameshift. Results In this study, we systematically analyzed publicly available viral genome sequences and identified compensatory frameshift events in hundreds of viral protein-coding sequences. Compensatory frameshift events resulted in large-scale amino acid differences between the compensatory frameshift form and the wild type even though their nucleotide sequences were almost identical. Phylogenetic analyses revealed that the evolutionary distance between proteins with and without a compensatory frameshift were significantly overestimated because amino acid mismatches caused by compensatory frameshifts were counted as substitutions. Further, this could cause compensatory frameshift forms to branch in different locations in the protein and nucleotide trees, which may obscure the correct interpretation of phylogenetic relationships between variant viruses. Conclusions Our results imply that the compensatory frameshift is one of the mechanisms driving the rapid protein evolution of RNA viruses and potentially assisting their host-range expansion and adaptation.


Sign in / Sign up

Export Citation Format

Share Document