scholarly journals An Efficient and Versatile Mammalian Viral Vector System for Major Histocompatibility Complex Class I/Peptide Complexes

2002 ◽  
Vol 76 (23) ◽  
pp. 11982-11988 ◽  
Author(s):  
Ai Kawana-Tachikawa ◽  
Mariko Tomizawa ◽  
Jun-ichi Nunoya ◽  
Tatsuo Shioda ◽  
Atsushi Kato ◽  
...  

ABSTRACT We report a Sendai virus (SeV) vector system for expression of major histocompatibility complex (MHC) class I/peptide complexes. We cloned the extracellular domain of a human MHC class I heavy chain, HLA-A*2402, and human β-2 microglobulin (β2m) fused with HLA-A*2402-restricted human immunodeficiency virus type 1 (HIV-1) cytotoxic T-lymphocyte (CTL) epitopes (e-β2m) in separate SeV vectors. When we coinfected nonhuman mammalian cells with the SeVs, naturally folded human MHC class I/peptide complexes were secreted in the culture supernatants. Biotin binding peptide sequences on the C terminus of the heavy chain were used to tetramerize the complexes. These tetramers made in the SeV system recognized specific CD8-positive T cells in peripheral blood mononuclear cells of HIV-1-positive patients with a specificity and sensitivity similar to those of MHC class I tetramers made in an Escherichia coli system. Solo infection of e-β2m/SeV produced soluble e-β2m in the culture supernatant, and cells pulsed with the soluble protein were recognized by specific CTLs. Furthermore, when cells were infected with e-β2m/SeV, these cells were recognized by the specific CTLs more efficiently than the protein pulse per se. SeV is nonpathogenic for humans, can transduce foreign genes into nondividing cells, and may be useful for immunotherapy to enhance antigen-specific immune responses. Our system can be used not only to detect but also to stimulate antigen-specific cellular immune responses.

1995 ◽  
Vol 182 (2) ◽  
pp. 439-447 ◽  
Author(s):  
J P Abastado ◽  
Y C Lone ◽  
A Casrouge ◽  
G Boulot ◽  
P Kourilsky

Major histocompatibility complex (MHC) class I molecules are cell-surface proteins that present peptides to CD8+ T cells. These peptides are mostly derived from endogenously synthesized protein. Recombinant, soluble MHC class I molecules were produced, purified, and loaded homogeneously with synthetic peptide. These MHC-peptide complexes were used to activate a T cell hybridoma. While monomers of MHC-peptide bound to the T cell, they showed no stimulatory activity. Dimers fully triggered the T cell hybridoma to secrete interleukin 2. This response was followed by a state in which the T cell was refractory to restimulation as a result of defective signal transduction through the T cell receptor.


2015 ◽  
Vol 167 (3-4) ◽  
pp. 166-170
Author(s):  
Larissa Sarmento dos Santos ◽  
Juliana Pinto da Silva Mol ◽  
Auricélio Alves de Macedo ◽  
Ana Patrícia Carvalho Silva ◽  
Diego Luiz dos Santos Ribeiro ◽  
...  

1997 ◽  
Vol 8 (1) ◽  
pp. 47-57 ◽  
Author(s):  
E Stang ◽  
J Kartenbeck ◽  
R G Parton

Simian virus 40 (SV40) has been shown to enter mammalian cells via uncoated plasma membrane invaginations. Viral particles subsequently appear within the endoplasmic reticulum. In the present study, we have examined the surface binding and internalization of SV40 by immunoelectron microscopy. We show that SV40 associates with surface pits which have the characteristics of caveolae and are labeled with antibodies to the caveolar marker protein, caveolin-1. SV40 is believed to use major histocompatibility complex (MHC) class I molecules as cell surface receptors. Using a number of MHC class I-specific monoclonal antibodies, we found that both viral infection and association of virus with caveolae were strongly reduced by preincubation with anti-MHC class I antibodies. Because binding of SV40 to MHC class I molecules may induce clustering, we investigated whether antibody cross-linked class I molecules also redistributed to caveolae. Clusters of MHC class I molecules were indeed shown to be specifically associated with caveolin-labeled surface pits. Taken together, the results suggest that SV40 may make use of MHC class I molecule clustering and the caveolae pathway to enter mammalian cells.


1993 ◽  
Vol 13 (3) ◽  
pp. 1554-1564
Author(s):  
A G Frauman ◽  
P Chu ◽  
L C Harrison

The overexpression of major histocompatibility complex (MHC) class I molecules in endocrine epithelial cells is an early feature of autoimmune thyroid disease and insulin-dependent diabetes mellitus, which may reflect a cellular response, e.g., to viruses or toxins. Evidence from a transgenic model in pancreatic beta cells suggests that MHC class I overexpression could play an independent role in endocrine cell destruction. We demonstrate in this study that the transgenic overexpression of an allogeneic MHC class I protein (H-2Kb) linked to the rat thyroglobulin promoter, in H-2Kk mice homozygous for the transgene, leads to thyrocyte atrophy, hypothyroidism, growth retardation, and death. Thyrocyte atrophy occurred in the absence of lymphocytic infiltration. Tolerance to allogeneic class I was revealed by the reduced ability of primed lymphocytes from transgenic mice to lyse H-2Kb target cells in vitro. This nonimmune form of thyrocyte destruction and hypothyroidism recapitulates the beta-cell destruction and diabetes that results from transgenic overexpression of MHC class I molecules in pancreatic beta cells. Thus, we conclude that overexpression of MHC class I molecules may be a general mechanism that directly impairs endocrine epithelial cell viability.


2011 ◽  
Vol 63 (12) ◽  
pp. 821-834 ◽  
Author(s):  
Lasse Eggers Pedersen ◽  
Mikkel Harndahl ◽  
Michael Rasmussen ◽  
Kasper Lamberth ◽  
William T. Golde ◽  
...  

2002 ◽  
Vol 196 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Laura Bonifaz ◽  
David Bonnyay ◽  
Karsten Mahnke ◽  
Miguel Rivera ◽  
Michel C. Nussenzweig ◽  
...  

To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.


1994 ◽  
Vol 180 (3) ◽  
pp. 1097-1106 ◽  
Author(s):  
O Lantz ◽  
A Bendelac

The mouse thymus contains a mature T cell subset that is distinguishable from the mainstream thymocytes by several characteristics. It is restricted in its usage of T cell receptor (TCR) V beta genes to V beta 8, V beta 7, and V beta 2. Its surface phenotype is that of activated/memory cells. It carries the natural killer NK1.1 surface marker. Furthermore, though it consists entirely of CD4+ and CD4-8- cells, its selection in the thymus depends solely upon major histocompatibility complex (MHC) class I expression by cells of hematopoietic origin. Forced persistence of CD8, in fact, imparts negative selection. Here, we have studied the TCR repertoire of this subset and found that, whereas the beta chain V-D-J junctions are quite variable, a single invariant alpha chain V alpha 14-J281 is used by a majority of the TCRs. This surprisingly restricted usage of the V alpha 14-J281 alpha chain is dependent on MHC class I expression, but independent of the MHC haplotype. In humans, a similar unusual population including CD4-8- cells can also be found that uses a strikingly homologous, invariant alpha chain V alpha 24-JQ. Thus, this unique V alpha-J alpha combination has been conserved in both species, conferring specificity to some shared nonpolymorphic MHC class I/peptide self-ligand(s). This implies that the T cell subset that it defines has a specialized and important role, perhaps related to its unique ability to secrete a large set of lymphokines including interleukin 4, upon primary stimulation in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document