scholarly journals CAF-Mediated Human Immunodeficiency Virus (HIV) Type 1 Transcriptional Inhibition Is Distinct from α-Defensin-1 HIV Inhibition

2003 ◽  
Vol 77 (12) ◽  
pp. 6777-6784 ◽  
Author(s):  
Theresa Li-Yun Chang ◽  
Fleur François ◽  
Arevik Mosoian ◽  
Mary E. Klotman

ABSTRACT CD8+ T lymphocytes can inhibit human immunodeficiency virus type 1 (HIV-1) replication by secreting a soluble factor(s) known as CD8+ T-lymphocyte antiviral factor (CAF). One site of CAF action is inhibition of HIV-1 RNA transcription, particularly at the step of long terminal repeat (LTR)-driven gene expression. The inhibitory effect of CAF on HIV-1 LTR activation is mediated through STAT1 activation. A recent study reports that α-defensins 1 to 3 account for CAF activity against HIV-1. Here, we address whether α-defensins, particularly α-defensin-1, contribute to CAF-mediated inhibition of HIV-1 transcription. Both recombinant α-defensin-1 and CAF derived from herpesvirus saimiri (HVS)-transformed CD8+ cells inhibited HIV-1 infection and gene expression. For both factors, the inhibition of HIV-1 infection did not occur at the level of viral entry. Pretreatment of cells with α-defensin-1 followed by a washing out prior to infection blocked infection by HIV-1, indicating that direct inactivation of virions was not required for its inhibitory effect. In contrast to CAF, α-defensin-1 did not inhibit phorbol myristate acetate- or Tat-mediated HIV-1 LTR activation in a transient transfection system, nor did it activate STAT1 tyrosine phosphorylation. Furthermore, α-defensins 1 to 3 were below the level of detection in a panel of HVS-transformed CD8+ cells with potent HIV-1 inhibitory activity and a neutralizing antibody against α-defensins 1 to 3 did not reverse the inhibitory effect of CAF on HIV-1 gene expression in infected cells and on HIV-1 LTR activation in transfected cells. Taken together, our results suggest that α-defensin-1 inhibits HIV-1 infection following viral entry but that α-defensins 1 to 3 are not responsible for the HIV-1 transcriptional inhibition by CAF.

1990 ◽  
Vol 172 (4) ◽  
pp. 1035-1042 ◽  
Author(s):  
C D Pauza ◽  
J E Galindo ◽  
D D Richman

High levels of unintegrated viral DNA accumulate during human immunodeficiency virus type 1 (HIV-1) infection of CEM T cells. Reinfection of already infected cells is required to attain these levels and reinfection also promotes the development of HIV-induced cytopathology. Rates of virus production, however, are independent of the accumulation of unintegrated viral DNA. Neutralizing antibody added soon after infection reduced viral DNA levels without appreciably affecting the production of cell-free viral p24 antigen or reverse transcriptase activity. Only 50 pM AZT were required to reduce the accumulation of unintegrated viral DNA by 50% in contrast to the 25 nM required to inhibit virus production by 50%. Cytopathology, as measured by number of syncytia in infected cell cultures, was correlated with highly elevated levels of unintegrated viral DNA. The minimal levels of unintegrated viral DNA present constitutively in the persistently infected HCEM cell line were consonant with the absence of cytopathic effects in these cells. These data demonstrate that inhibiting the reinfection of already infected cells modulates cytopathic HIV-1 infection to a form that is persistent and noncytopathic.


2003 ◽  
Vol 77 (2) ◽  
pp. 1392-1402 ◽  
Author(s):  
Angélique B. van 't Wout ◽  
Ginger K. Lehrman ◽  
Svetlana A. Mikheeva ◽  
Gemma C. O'Keeffe ◽  
Michael G. Katze ◽  
...  

ABSTRACT The expression levels of ∼4,600 cellular RNA transcripts were assessed in CD4+-T-cell lines at different times after infection with human immunodeficiency virus type 1 strain BRU (HIV-1BRU) using DNA microarrays. We found that several classes of genes were inhibited by HIV-1BRU infection, consistent with the G2 arrest of HIV-1-infected cells induced by Vpr. These included genes involved in cell division and transcription, a family of DEAD-box proteins (RNA helicases), and all genes involved in translation and splicing. However, the overall level of cell activation and signaling was increased in infected cells, consistent with strong virus production. These included a subgroup of transcription factors, including EGR1 and JUN, suggesting they play a specific role in the HIV-1 life cycle. Some regulatory changes were cell line specific; however, the majority, including enzymes involved in cholesterol biosynthesis, of changes were regulated in most infected cell lines. Compendium analysis comparing gene expression profiles of our HIV-1 infection experiments to those of cells exposed to heat shock, interferon, or influenza A virus indicated that HIV-1 infection largely induced specific changes rather than simply activating stress response or cytokine response pathways. Thus, microarray analysis confirmed several known HIV-1 host cell interactions and permitted identification of specific cellular pathways not previously implicated in HIV-1 infection. Continuing analyses are expected to suggest strategies for impacting HIV-1 replication in vivo by targeting these pathways.


1999 ◽  
Vol 73 (5) ◽  
pp. 3608-3615 ◽  
Author(s):  
Valérie Maréchal ◽  
Fernando Arenzana-Seisdedos ◽  
Jean-Michel Heard ◽  
Olivier Schwartz

ABSTRACT The α-chemokine SDF-1 binds CXCR4, a coreceptor for human immunodeficiency virus type 1 (HIV-1), and inhibits viral entry mediated by this receptor. Since chemokines are potent chemoattractants and activators of leukocytes, we examined whether the stimulation of HIV target cells by SDF-1 affects the replication of virus with different tropisms. We observed that SDF-1 inhibited the entry of X4 strains and increased the infectivity of particles bearing either a CCR5-tropic HIV-1 envelope or a vesicular stomatitis virus G envelope. In contrast to the inhibitory effect of SDF-1 on X4 strains, which is at the level of entry, the stimulatory effect does not involve envelope-receptor interactions or proviral DNA synthesis. Rather, we observed an increased ability of Tat to transactivate the HIV-1 long terminal repeat in the presence of the chemokine. Therefore, the effects of SDF-1 on the HIV-1 life cycle can be multiple and opposite, including both an inhibition of viral entry and a stimulation of proviral gene expression.


1999 ◽  
Vol 43 (10) ◽  
pp. 2350-2355 ◽  
Author(s):  
Masanori Baba ◽  
Mika Okamoto ◽  
Hitoshi Takeuchi

ABSTRACT In a search for effective HIV-1 transcription inhibitors, we have evaluated more than 75,000 compounds for their inhibitory effects on Tat-induced human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR)-driven reporter gene expression and found that EM2487, a novel small-molecule substance produced by a Streptomycesspecies, is a potent and selective inhibitor of HIV-1 replication in both acutely and chronically infected cells. Its 50% effective concentration for acute HIV-1 infection was 0.27 μM in peripheral blood mononuclear cells (PBMCs), while the 50% cytotoxic concentration for mock-infected PBMCs was 13.3 μM. EM2487 proved inhibitory to a variety of HIV-1 strains and HIV-2 in acutely infected T-cell lines (MOLT-4 and MT-4). The compound could suppress tumor necrosis factor alpha (TNF-α)-induced HIV-1 production in latently infected cells (OM-10.1 and ACH-2) as well as constitutive viral production in chronically infected cells (MOLT-4/IIIB and U937/IIIB) without showing any cytotoxicity. EM2487 did not affect early events of the HIV-1 replication cycle, as determined by proviral DNA synthesis in acutely infected MOLT-4 cells. In contrast, the compound selectively prevented viral mRNA synthesis in OM-10.1 cells, suggesting that HIV-1 inhibition occurs at the transcriptional level. Furthermore, EM2487 did not inhibit TNF-α-induced HIV-1 LTR-driven reporter gene expression but did inhibit that induced by Tat, irrespective of the presence or absence of the nuclear factor κB binding sites in the LTR. These results suggest that the mechanism of action is attributable in part to the inhibition of Tat function.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1798
Author(s):  
Grant R. Campbell ◽  
Stephen A. Spector

Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.


2001 ◽  
Vol 75 (17) ◽  
pp. 7925-7933 ◽  
Author(s):  
Mario Canki ◽  
Janice Ngee Foong Thai ◽  
Wei Chao ◽  
Anuja Ghorpade ◽  
Mary Jane Potash ◽  
...  

ABSTRACT Human astrocytes can be infected with human immunodeficiency virus type 1 (HIV-1) in vitro and in vivo, but, in contrast to T lymphocytes and macrophages, virus expression is inefficient. To investigate the HIV-1 life cycle in human fetal astrocytes, we infected cells with HIV-1 pseudotyped with envelope glycoproteins of either amphotropic murine leukemia virus or vesicular stomatitis virus. Infection by both pseudotypes was productive and long lasting and reached a peak of 68% infected cells and 1.7 μg of viral p24 per ml of culture supernatant 7 days after virus inoculation and then continued with gradually declining levels of virus expression through 7 weeks of follow-up. This contrasted with less than 0.1% HIV-1 antigen-positive cells and 400 pg of extracellular p24 per ml at the peak of astrocyte infection with native HIV-1. Cell viability and growth kinetics were similar in infected and control cells. Northern blot analysis revealed the presence of major HIV-1 RNA species of 9, 4, and 2 kb in astrocytes exposed to pseudotyped (but not wild-type) HIV-1 at 2, 14, and 28 days after infection. Consistent with productive infection, the 9- and 4-kb viral transcripts in astrocytes infected by pseudotyped HIV-1 were as abundant as the 2-kb mRNA during 4 weeks of follow-up, and both structural and regulatory viral proteins were detected in infected cells by immunoblotting or cell staining. The progeny virus released by these cells was infectious. These results indicate that the major barrier to HIV-1 infection of primary astrocytes is at virus entry and that astrocytes have no intrinsic intracellular restriction to efficient HIV-1 replication.


2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


1998 ◽  
Vol 72 (11) ◽  
pp. 9337-9344 ◽  
Author(s):  
Yi-jun Zhang ◽  
Tatjana Dragic ◽  
Yunzhen Cao ◽  
Leondios Kostrikis ◽  
Douglas S. Kwon ◽  
...  

ABSTRACT We have tested a panel of pediatric and adult human immunodeficiency virus type 1 (HIV-1) primary isolates for the ability to employ the following proteins as coreceptors during viral entry: CCR1, CCR2b, CCR3, CCR4, CCR5, CCR8, CXCR4, Bonzo, BOB, GPR1, V28, US28, and APJ. Most non-syncytium-inducing isolates could utilize only CCR5. All syncytium-inducing viruses used CXCR4, some also employed V28, and one (DH123) used CCR8 and APJ as well. A longitudinal series of HIV-1 subtype B isolates from an infected infant and its mother utilized Bonzo efficiently, as well as CCR5. The maternal isolates, which were syncytium inducing, also used CXCR4, CCR8, V28, and APJ.


2007 ◽  
Vol 81 (12) ◽  
pp. 6187-6196 ◽  
Author(s):  
E. S. Gray ◽  
P. L. Moore ◽  
I. A. Choge ◽  
J. M. Decker ◽  
F. Bibollet-Ruche ◽  
...  

ABSTRACT The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.


Sign in / Sign up

Export Citation Format

Share Document