scholarly journals Regulation of Hepatitis B Virus Replication by the Ras-Mitogen-Activated Protein Kinase Signaling Pathway

2003 ◽  
Vol 77 (14) ◽  
pp. 7707-7712 ◽  
Author(s):  
Yanyan Zheng ◽  
Jie Li ◽  
Deborah L. Johnson ◽  
Jing-hsiung Ou

ABSTRACT The replication of hepatitis B virus (HBV) can be regulated by a variety of factors, including hormones, growth factors, and cytokines. However, the molecular mechanisms of these regulations are largely unknown. Ras is a small GTPase that responds to many of these external stimuli. In this study, we investigated the possible effect of Ras on the replication of HBV. Our results indicated that activated Ras could suppress the replication of HBV in both Huh7 and HepG2 cells. This suppression was independent of the X protein and most likely occurred at the transcriptional level. Deletion-mapping analysis of the HBV core promoter and its upstream ENI and ENII enhancers revealed multiple elements responsive to activated Ras. This suppression of HBV replication by activated Ras was apparently mediated by the mitogen-activated protein (MAP) kinase pathway, as it was accompanied by activation of ERK1/2 and abolished by the MEK1/2 inhibitor U0126. Our results thus indicate that external stimuli may suppress HBV replication through the Ras-MAP kinase pathway.

1997 ◽  
Vol 17 (11) ◽  
pp. 6427-6436 ◽  
Author(s):  
N P Klein ◽  
R J Schneider

The HBx protein of hepatitis B virus (HBV) is a small transcriptional transactivator that is essential for infection by the mammalian hepadnaviruses and is thought to be a cofactor in HBV-mediated liver cancer. HBx stimulates signal transduction pathways by acting in the cytoplasm, which accounts for many but not all of its transcriptional activities. Studies have shown that HBx protein activates Ras and downstream Ras signaling pathways including Raf, mitogen-activated protein (MAP) kinase kinase kinase (MEK), and MAP kinases. In this study, we investigated the mechanism of activation of Ras by HBx because it has been found to be central to the ability of HBx protein to stimulate transcription and to release growth arrest in quiescent cells. In contrast to the transient but strong stimulation of Ras typical of autocrine factors, activation of Ras by HBx protein was found to be constitutive but moderate. HBx induced the association of Ras upstream activating proteins Shc, Grb2, and Sos and stimulated GTP loading onto Ras, but without directly participating in complex formation. Instead, HBx is shown to stimulate Ras-activating proteins by functioning as an intracellular cytoplasmic activator of the Src family of tyrosine kinases, which can signal to Ras. HBx protein stimulated c-Src and Fyn kinases for a prolonged time. Activation of Src is shown to be indispensable for a number of HBx activities, including activation of Ras and the Ras-Raf-MAP kinase pathway and stimulation of transcription mediated by transcription factor AP-1. Importantly, HBx protein expressed in cultured cells during HBV replication is shown to activate the Ras signaling pathway. Mechanisms by which HBx protein might activate Src kinases are discussed.


2004 ◽  
Vol 24 (23) ◽  
pp. 10352-10365 ◽  
Author(s):  
Wen-Horng Wang ◽  
Gérald Grégori ◽  
Ronald L. Hullinger ◽  
Ourania M. Andrisani

ABSTRACT Activation of the cellular stress pathways (c-Jun N-terminal kinase [JNK] and p38 mitogen-activated protein [MAP] kinase) is linked to apoptosis. However, whether both pathways are required for apoptosis remains unresolved. Hepatitis B virus X protein (pX) activates p38 MAP kinase and JNK pathways and, in response to weak apoptotic signals, sensitizes hepatocytes to apoptosis. Employing hepatocyte cell lines expressing pX, which was regulated by tetracycline, we investigated the mechanism of apoptosis by p38 MAP kinase and JNK pathway activation. Inhibition of the p38 MAP kinase pathway rescues by 80% the initiation of pX-mediated apoptosis, whereas subsequent apoptotic events involve both pathways. pX-mediated activation of p38 MAP kinase and JNK pathways is sustained, inducing the transcription of the death receptor family genes encoding Fas/FasL and tumor necrosis factor receptor 1 (TNFR1)/TNF-α and the p53-regulated Bax and Noxa genes. The pX-dependent expression of Fas/FasL and TNFR1/TNF-α mediates caspase 8 activation, resulting in Bid cleavage. In turn, activated Bid, acting with pX-induced Bax and Noxa, mediates the mitochondrial release of cytochrome c, resulting in the activation of caspase 9 and apoptosis. Combined antibody neutralization of FasL and TNF-α reduces by 70% the initiation of pX-mediated apoptosis. These results support the importance of the pX-dependent activation of both the p38 MAP kinase and JNK pathways in pX-mediated apoptosis and suggest that this mechanism of apoptosis occurs in vivo in response to weak apoptotic signals.


2007 ◽  
Vol 81 (21) ◽  
pp. 12061-12065 ◽  
Author(s):  
Stephanie L. McClain ◽  
Amy J. Clippinger ◽  
Rebecca Lizzano ◽  
Michael J. Bouchard

ABSTRACT The nonstructural hepatitis B virus (HBV) protein HBx has an important role in HBV replication and in HBV-associated liver disease. Many activities have been linked to HBx expression; however, the molecular mechanisms underlying many of these activities are unknown. One proposed HBx function is the regulation of cytosolic calcium. We analyzed calcium levels in HepG2 cells that expressed HBx or replicating HBV, and we demonstrated that HBx, expressed in the absence of other HBV proteins or in the context of HBV replication, elevates cytosolic calcium. We linked this elevation of cytosolic calcium to the association of HBx with the mitochondrial permeability transition pore.


2004 ◽  
Vol 48 (6) ◽  
pp. 2199-2205 ◽  
Author(s):  
Radhakrishnan P. Iyer ◽  
Yi Jin ◽  
Arlene Roland ◽  
John D. Morrey ◽  
Samir Mounir ◽  
...  

ABSTRACT Several nucleoside analogs are under clinical development for use against hepatitis B virus (HBV). Lamivudine (3TC), a nucleoside analog, and adefovir dipivoxil (ADV), an acyclonucleotide analog, are clinically approved. However, long-term treatment can induce viral resistance, and following the cessation of therapy, viral rebound is frequently observed. There continues to be a need for new antiviral agents with novel mechanisms of action. A library of more than 600 di- and trinucleotide compounds synthesized by parallel synthesis using a combinatorial strategy was screened for potential inhibitors of HBV replication using the chronically HBV-producing cell line 2.2.15. Through an iterative process of synthesis, lead optimization, and screening, three analogs were identified as potent inhibitors of HBV replication: dinucleotides ORI-7246 (drug concentration at which a 10-fold reduction of HBV DNA was observed [EC90], 1.4 μM) and ORI-9020 (EC90, 1.2 μM) and trinucleotide ORI-7170 (EC90, 7.2 μM). These analogs inhibited the replication of both strands of HBV DNA. No suppression of HBV protein synthesis or intracellular core particle formation by these analogs was observed. No inhibition of HBV DNA strand elongation by the analogs or their 5′-triphosphate versions was apparent in in vitro polymerase assays. Although the exact mechanism of action is not yet identified, present data are consistent with an inhibition of the HBV reverse transcriptase-directed priming step prior to elongation of the first viral DNA strand. In transient-transfection assays, these analogs inhibited the replication of 3TC-resistant HBV. Synergistic interactions in combination treatments between the analogs and either 3TC or ADV were observed. These compounds represent a novel class of anti-HBV molecules and warrant further investigation as potential therapeutic agents.


2007 ◽  
Vol 88 (12) ◽  
pp. 3270-3274 ◽  
Author(s):  
Marianne Bonvin ◽  
Jobst Greeve

APOBEC3 cytidine deaminases hypermutate hepatitis B virus (HBV) and inhibit its replication in vitro. Whether this inhibition is due to the generation of hypermutations or to an alternative mechanism is controversial. A series of APOBEC3B (A3B) point mutants was analysed in vitro for hypermutational activity on HBV DNA and for inhibitory effects on HBV replication. Point mutations inactivating the carboxy-terminal deaminase domain abolished the hypermutational activity and reduced the inhibitory activity on HBV replication to approximately 40 %. In contrast, the point mutation H66R, inactivating the amino-terminal deaminase domain, did not affect hypermutations, but reduced the inhibition activity to 63 %, whilst the mutant C97S had no effect in either assay. Thus, only the carboxy-terminal deaminase domain of A3B catalyses cytidine deaminations leading to HBV hypermutations, but induction of hypermutations is not sufficient for full inhibition of HBV replication, for which both domains of A3B must be intact.


1989 ◽  
Vol 9 ◽  
pp. S189
Author(s):  
P Marcellin ◽  
G Pialcux ◽  
PM Girard ◽  
N Bover ◽  
M Martinot ◽  
...  

2021 ◽  
Vol 102 (12) ◽  
Author(s):  
Sujeong Lee ◽  
Hyunyoung Yoon ◽  
Jiwoo Han ◽  
Kyung Lib Jang

Most clinical and experimental studies have suggested that hepatitis C virus (HCV) is dominant over hepatitis B virus (HBV) during coinfection, although the mechanism remains unclear. Here, we found that HCV core protein inhibits HBV replication by downregulating HBx levels during coinfection in human hepatoma cells. For this effect, HCV core protein increased reactive oxygen species levels in the mitochondria and activated the ataxia telangiectasia mutated-checkpoint kinase two pathway in the nucleus, resulting in an upregulation of p53 levels. Accordingly, HCV core protein induced p53-dependent activation of seven in absentia homolog one expression, an E3 ligase of HBx, resulting in the ubiquitination and proteasomal degradation of HBx. The effect of the HCV core protein on HBx levels was accurately reproduced in both a 1.2-mer HBV replicon and in vitro HBV infection systems, providing evidence for the inhibition of HBV replication by HCV core protein. The present study may provide insights into the mechanism of HCV dominance in HBV- and HCV-coinfected patients.


Sign in / Sign up

Export Citation Format

Share Document