scholarly journals Borna Disease Virus Phosphoprotein Represses p53-Mediated Transcriptional Activity by Interference with HMGB1

2003 ◽  
Vol 77 (22) ◽  
pp. 12243-12251 ◽  
Author(s):  
Guoqi Zhang ◽  
Takeshi Kobayashi ◽  
Wataru Kamitani ◽  
Satoshi Komoto ◽  
Makiko Yamashita ◽  
...  

ABSTRACT Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that has a broad host range in warm-blooded animals, probably including humans. Recently, it was demonstrated that a 24-kDa phosphoprotein (P) of BDV directly binds to a multifunctional protein, amphoterin-HMGB1, and inhibits its function in cultured neural cells (W. Kamitani, Y. Shoya, T. Kobayashi, M. Watanabe, B. J. Lee, G. Zhang, K. Tomonaga, and K. Ikuta, J. Virol. 75:8742-8751, 2001). This observation suggested that expression of BDV P may cause deleterious effects in cellular functions by interference with HMGB1. In this study, we further investigated the significance of the binding between P and HMGB1. We demonstrated that P directly binds to the A-box domain on HMGB1, which is also responsible for interaction with a tumor suppression factor, p53. Recent works have demonstrated that binding between HMGB1 and p53 enhances p53-mediated transcriptional activity. Thus, we examined whether BDV P affects the transcriptional activity of p53 by interference with HMGB1. Mammalian two-hybrid analysis revealed that p53 and P competitively interfere with the binding of each protein to HMGB1 in a p53-deficient cell line, NCI-H1299. In addition, P was able to significantly decrease p53-mediated transcriptional activation of the cyclin G promoter. Furthermore, we showed that activation of p21waf1 expression was repressed in cyclosporine-treated BDV-infected cells, as well as p53-transduced NCI-H1299 cells. These results suggested that BDV P may be a unique inhibitor of p53 activity via binding to HMGB1.

2002 ◽  
Vol 76 (12) ◽  
pp. 6268-6276 ◽  
Author(s):  
Jeffrey J. Bajramovic ◽  
Sylvie Syan ◽  
Michel Brahic ◽  
Juan Carlos de la Torre ◽  
Daniel Gonzalez-Dunia

ABSTRACT Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that causes neurological diseases in a variety of warm-blooded animal species. There is general consensus that BDV can also infect humans, being a possible zoonosis. Although the clinical consequences of human BDV infection are still controversial, experimental BDV infection is a well-described model for human neuropsychiatric diseases. To date, there is no effective treatment against BDV. In this paper, we demonstrate that the nucleoside analog 1-β-d-arabinofuranosylcytosine (Ara-C), a known inhibitor of DNA polymerases, inhibits BDV replication. Ara-C treatment inhibited BDV RNA and protein synthesis and prevented BDV cell-to-cell spread in vitro. Replication of other negative-strand RNA viruses such as influenza virus or measles virus was not inhibited by Ara-C, underscoring the particularity of the replication machinery of BDV. Strikingly, Ara-C treatment induced nuclear retention of viral ribonucleoparticles. These findings could not be attributed to known effects of Ara-C on the host cell, suggesting that Ara-C directly inhibits the BDV polymerase. Finally, we show that Ara-C inhibits BDV replication in vivo in the brain of infected rats, preventing persistent infection of the central nervous system as well as the development of clinical disease. These findings open the way to the development of effective antiviral therapy against BDV.


1999 ◽  
Vol 73 (1) ◽  
pp. 760-766 ◽  
Author(s):  
Takehiro Kohno ◽  
Toshiyuki Goto ◽  
Tomohiko Takasaki ◽  
Chizuko Morita ◽  
Takaaki Nakaya ◽  
...  

ABSTRACT Borna disease virus (BDV), a negative nonsegmented single-stranded RNA virus, has not been fully characterized morphologically. Here we present what is to our knowledge the first data on the fine ultrastructure and morphogenesis of BDV. The supernatant of MDCK cells persistently infected with BDV treated with n-butyrate contained many virus-like particles and more BDV-specific RNA than that of untreated samples. The particles were spherical, enveloped, and approximately 130 nm in diameter; had spikes 7 nm in length; and reacted with BDV p40 antibody. A thin nucleocapsid, 4 nm in width, was present peripherally in contrast to the thick nucleocapsid of hemagglutinating virus of Japan. The BDV particles reproduced by budding on the cell surface.


2000 ◽  
Vol 81 (8) ◽  
pp. 1947-1954 ◽  
Author(s):  
Christian Jehle ◽  
W. Ian Lipkin ◽  
Peter Staeheli ◽  
Rosa M. Marion ◽  
Martin Schwemmle

Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that replicates and transcribes its genome in the nucleus of infected cells. It uses the cellular splicing machinery to generate a set of alternatively spliced mRNAs from the 2·8 and 7·1 kb primary transcripts, each harbouring two introns. To determine whether splicing of these transcripts is regulated by viral factors, the extent of splicing was studied in infected cells and COS-7 cells transiently transfected with plasmids encoding the 2·8 kb RNA of BDV. Unspliced RNA was found to be the most abundant RNA species in infected cells, whereas viral transcripts lacking both introns were only found in minute amounts. In sharp contrast, plasmid-derived 2·8 kb RNA was predominantly intron 1-spliced and double-spliced. Co-expression of the BDV proteins P, N and X did not influence splicing of plasmid-expressed 2·8 kb RNA. Furthermore, the splicing pattern did not change when the 2·8 kb RNA was expressed in BDV-infected cells. Based on these results we speculate that splicing of authentic BDV transcripts is tightly linked to transcription by the viral polymerase.


2001 ◽  
Vol 82 (9) ◽  
pp. 2199-2204 ◽  
Author(s):  
G. Dauphin ◽  
V. Legay ◽  
C. Sailleau ◽  
S. Smondack ◽  
S. Hammoumi ◽  
...  

Borna disease virus (BDV) is an enveloped, non-segmented negative-stranded RNA virus which belongs to the Bornaviridae family. BDV is an aetiological agent of encephalitis in horses, sheep and several other vertebrate species. In order to extend our knowledge about the presence of BDV in France, a study based on BDV RNA detection by RT–nested-PCR was done with 196 animal tissues: 171 brain samples collected from different animal species (75 horses, 59 foxes, 31 cattle, 4 dogs, 1 sheep, 1 roe deer) and 25 horse blood samples. An RNA internal standard molecule was constructed and was co-amplified with the test template. This study reports the first detection of BDV RNA in France in 10 brain samples collected from horses, foxes and cattle, and from 14 horse blood samples. Detection of the BDV genome in the brains of six red foxes is the first evidence of BDV infection in this species.


2021 ◽  
Author(s):  
Takehiro Kanda ◽  
Masayuki Horie ◽  
Yumiko Komatsu ◽  
Keizo Tomonaga

An RNA virus-based episomal vector (REVec) based on Borna disease virus 1 (BoDV-1) is a promising viral vector that achieves stable and long-term gene expression in transduced cells. However, the onerous procedure of reverse genetics used to generate a REVec is one of the challenges that must be overcome to make REVec technologies practical for use. In this study, to resolve the problems posed by reverse genetics, we focused on BoDV-2, a conspecific virus of BoDV-1 in the Mammalian 1 orthobornavirus . We synthesized the BoDV-2 nucleoprotein (N) and phosphoprotein (P) according to the reference sequences and evaluated their effects on the RNA polymerase activity of the BoDV-1 large protein (L) and viral replication. In the minireplicon assay, we found that BoDV-2 N significantly enhanced BoDV-1 polymerase activity and that BoDV-2 P supported further enhancement of this activity by N. A single amino acid substitution assay identified serine at position 30 of BoDV-2 N and alanine at position 24 of BoDV-2 P as critical amino acid residues for the enhancement of BoDV-1 polymerase activity. In reverse genetics, on the other hand, BoDV-2 N alone was sufficient to increase the rescue efficiency of the REVec. We showed that the REVec can be rescued directly from transfected 293T cells by using BoDV-2 N as a helper plasmid without cocultivation with Vero cells and following several weeks of passage. In addition, a chimeric REVec harboring the BoDV-2 N produced much higher levels of transgene mRNA and genomic RNA than the wild-type REVec in transduced cells. Our results contribute to not only improvements to the REVec system but also understanding of the molecular regulation of orthobornavirus polymerase activity. Importance Borna disease virus 1 (BoDV-1), a prototype virus of the species Mammalian 1 orthobornavirus , is a nonsegmented negative-strand RNA virus that persists in the host nucleus. The nucleoprotein (N) of BoDV-1 encapsidates genomic and antigenomic viral RNA, playing important roles in viral transcription and replication. In this study, we demonstrated that the N of BoDV-2, another genotype in the species Mammalian 1 orthobornavirus , can participate in the viral ribonucleoprotein complex of BoDV-1 and enhance the activity of BoDV-1 polymerase (L) in both the BoDV-1 minireplicon assay and reverse genetics system. Chimeric recombinant BoDV-1 expressing BoDV-2 N but not BoDV-1 N showed higher transcription and replication levels, whereas the propagation and infectious particle production of the chimeric virus were comparable to those of wild-type BoDV-1, suggesting that the level of viral replication in the nucleus is not directly involved in the progeny virion production of BoDVs. Our results demonstrate a molecular mechanism of bornaviral polymerase activity, which will contribute to further development of vector systems using orthobornaviruses.


2001 ◽  
Vol 16 (1) ◽  
pp. 3-10 ◽  
Author(s):  
O. Taieb ◽  
J.M. Baleyte ◽  
P. Mazet ◽  
A.M. Fillet

Borna disease virus (BDV), a noncytolytic neurotropic nonsegmented negative-stranded RNA virus with a wide geographic distribution, infects several vertebrate animal species and causes an immune-mediated central nervous system (CNS) disease with various manifestations, depending on both host and viral factors. In animal infections, BDV can persist in the CNS and induce alterations in brain cell functions, neurodevelopmental abnormalities and behavioral disturbances. An association between BDV and psychiatric disorders (essentially schizophrenia and affective disorders) has been suggested by some serologic and molecular studies but further investigations are required to substantiate the possible contribution of this virus to the pathogenesis of these disorders.


2006 ◽  
Vol 80 (3) ◽  
pp. 1121-1129 ◽  
Author(s):  
Hideyuki Yanai ◽  
Takeshi Kobayashi ◽  
Yohei Hayashi ◽  
Yohei Watanabe ◽  
Naohiro Ohtaki ◽  
...  

ABSTRACT Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that replicates and transcribes in the nucleus of infected cells. Recently, we have demonstrated that BDV phosphoprotein (P) can modulate its subcellular localization through binding to the protein X, which is encoded in the overlapping open reading frame (T. Kobayashi et al., J. Virol. 77:8099-8107, 2003). This observation suggested a unique strategy of intracellular trafficking of a viral protein that is essential for the formation of a functional BDV ribonucleoprotein (RNP). However, neither the mechanism nor the consequences of the cytoplasmic retention or nuclear export of BDV X-P complex have been elucidated. In this study, we show that BDV P contains a bona fide nuclear export signal (NES) and can actively shuttle between the nucleus and cytoplasm. A transient transfection analysis of cDNA clones that mimic the BDV bicistronic X/P mRNA revealed that the methionine-rich (MetR) domain of P is responsible for the X-dependent cytoplasmic localization of the protein complex. Mutational and functional analysis revealed that the methionine residues within the MetR domain are critical for the activity of the NES of P. Furthermore, leptomycin B or small interfering RNA for inhibition of CRM1 strongly suggested that a CRM1-dependent pathway mediates nuclear export of P. Fluorescence loss in photobleaching analysis confirmed the nucleocytoplasmic shuttling of P. Moreover, we revealed that the nuclear export of P is not involved in the inhibition of the polymerase activity by X in the BDV minireplicon system. Our results may provide a unique strategy for the nucleocytoplasmic transport of viral RNP, which could be critical for the formation of not only infectious virions in the cytoplasm but also a persistent viral state in the nucleus.


2002 ◽  
Vol 76 (16) ◽  
pp. 8460-8467 ◽  
Author(s):  
Michelle Portlance Walker ◽  
W. Ian Lipkin

ABSTRACT Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus that replicates and transcribes its genome in the nucleus of infected cells. BDV proteins involved in replication and transcription must pass through the nuclear envelope to associate with the genomic viral RNA. The RNA-dependent RNA polymerase (L) of BDV is postulated to be the catalytic enzyme of replication and transcription. We demonstrated previously that BDV L localizes to the nucleus of BDV-infected cells and L-transfected cells. Nuclear localization of the protein presupposes the presence of a nuclear localization signal (NLS) within its primary amino acid sequence or cotransport to the nucleus with another karyophilic protein. Because L localized to the nucleus in the absence of other viral proteins, we investigated the possibility that L contains an NLS. The minimal sequence required for nuclear localization of L was identified by analyzing the subcellular distribution of deletion mutants of L fused to a flag epitope tag or β-galactosidase. Although the majority of the L fusion proteins localized to the cytoplasm of transfected BSR-T7 cells, a strong NLS (844RVVKLRIAP852) with basic and proline residues was identified. Mutation of this sequence resulted in cytoplasmic distribution of L, confirming that this sequence was necessary and sufficient to drive the nuclear localization of L.


1994 ◽  
Vol 34 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Beatrice Cubitt ◽  
Christopher Oldstone ◽  
Juan Valcarcel ◽  
Juan Carlos de la Torre

Sign in / Sign up

Export Citation Format

Share Document