scholarly journals Molecular Characteristics of Human Immunodeficiency Virus Type 1 Subtype C Viruses from KwaZulu-Natal, South Africa: Implications for Vaccine and Antiretroviral Control Strategies

2003 ◽  
Vol 77 (4) ◽  
pp. 2587-2599 ◽  
Author(s):  
M. Gordon ◽  
T. De Oliveira ◽  
K. Bishop ◽  
H. M. Coovadia ◽  
L. Madurai ◽  
...  

ABSTRACT The KwaZulu-Natal region of South Africa is experiencing an explosive outbreak of human immunodeficiency virus type 1 (HIV-1) subtype C infections. Understanding the genetic diversity of C viruses and the biological consequences of this diversity is important for the design of effective control strategies. We analyzed the protease gene, the first 935 nucleotides of reverse transcriptase, and the C2V5 envelope region of a representative set of 72 treatment-naïve patients from KwaZulu-Natal and correlated the results with amino acid signature and resistance patterns. Phylogenetic analysis revealed multiple clusters or “lineages” of HIV-1 subtype C that segregated with other C viruses from southern Africa. The same pattern was observed for both black and Indian subgroups and for retrospective specimens collected prior to 1990, indicating that multiple sublineages of HIV-1 C have been present in KwaZulu-Natal since the early stages of the epidemic. With the exception of three nonnucleoside reverse transcriptase inhibitor mutations, no primary resistance mutations were identified. Numerous accessory polymorphisms were present in the protease, but none were located at drug-binding or active sites of the enzyme. One frequent polymorphism, I93L, was located near the protease/reverse transcriptase cleavage site. In the envelope, disruption of the glycosylation motif at the beginning of V3 was associated with the presence of an extra protein kinase C phosphorylation site at codon 11. Many polymorphisms were embedded within cytotoxic T lymphocyte or overlapping cytotoxic T-lymphocyte/T-helper epitopes, as defined for subtype B. This work forms a baseline for future studies aimed at understanding the impact of genetic diversity on vaccine efficacy and on natural susceptibility to antiretroviral drugs.

2002 ◽  
Vol 76 (20) ◽  
pp. 10155-10168 ◽  
Author(s):  
V. Novitsky ◽  
H. Cao ◽  
N. Rybak ◽  
P. Gilbert ◽  
M. F. McLane ◽  
...  

ABSTRACT A systematic analysis of immune responses on a population level is critical for a human immunodeficiency virus type 1 (HIV-1) vaccine design. Our studies in Botswana on (i) molecular analysis of the HIV-1 subtype C (HIV-1C) epidemic, (ii) frequencies of major histocompatibility complex class I HLA types, and (iii) cytotoxic T-lymphocyte (CTL) responses in the course of natural infection allowed us to address HIV-1C-specific immune responses on a population level. We analyzed the magnitude and frequency of the gamma interferon ELISPOT-based CTL responses and translated them into normalized cumulative CTL responses. The introduction of population-based cumulative CTL responses reflected both (i) essentials of the predominant virus circulating locally in Botswana and (ii) specificities of the genetic background of the Botswana population, and it allowed the identification of immunodominant regions across the entire HIV-1C. The most robust and vigorous immune responses were found within the HIV-1C proteins Gag p24, Vpr, Tat, and Nef. In addition, moderately strong responses were scattered across Gag p24, Pol reverse transcriptase and integrase, Vif, Tat, Env gp120 and gp41, and Nef. Assuming that at least some of the immune responses are protective, these identified immunodominant regions could be utilized in designing an HIV vaccine candidate for the population of southern Africa. Targeting multiple immunodominant regions should improve the overall vaccine immunogenicity in the local population and minimize viral escape from immune recognition. Furthermore, the analysis of HIV-1C-specific immune responses on a population level represents a comprehensive systematic approach in HIV vaccine design and should be considered for other HIV-1 subtypes and/or different geographic areas.


2001 ◽  
Vol 75 (19) ◽  
pp. 9210-9228 ◽  
Author(s):  
V. Novitsky ◽  
N. Rybak ◽  
M. F. McLane ◽  
P. Gilbert ◽  
P. Chigwedere ◽  
...  

ABSTRACT The most severe human immunodeficiency virus type 1 (HIV-1) epidemic is occurring in southern Africa. It is caused by HIV-1 subtype C (HIV-1C). In this study we present the identification and analysis of cumulative cytotoxic T-lymphocyte (CTL) responses in the southern African country of Botswana. CTLs were shown to be an important component of the immune response to control HIV-1 infection. The definition of optimal and dominant epitopes across the HIV-1C genome that are targeted by CTL is critical for vaccine design. The characteristics of the predominant virus that causes the HIV-1 epidemic in a certain geographic area and also the genetic background of the population, through the distribution of common HLA class I alleles, might impact dominant CTL responses in the vaccinee and in the general population. The enzyme-linked immunospot (Elispot) gamma interferon assay has recently been shown to be a reliable tool to map optimal CTL epitopes, correlating well with other methods, such as intracellular staining, tetramer staining, and the classical chromium release assay. Using Elispot with overlapping synthetic peptides across Gag, Tat, Rev, and Nef, we analyzed HIV-1C-specific CTL responses of HIV-1-infected blood donors. Profiles of cumulative Elispot-based CTL responses combined with diversity and sequence consensus data provide an additional characterization of immunodominant regions across the HIV-1C genome. Results of the study suggest that the construction of a poly-epitope subtype-specific HIV-1 vaccine that includes multiple copies of immunodominant CTL epitopes across the viral genome, derived from predominant HIV-1 viruses, might be a logical approach to the design of a vaccine against AIDS.


2001 ◽  
Vol 75 (9) ◽  
pp. 4430-4434 ◽  
Author(s):  
James P. McGettigan ◽  
Heather D. Foley ◽  
Igor M. Belyakov ◽  
Jay A. Berzofsky ◽  
Roger J. Pomerantz ◽  
...  

ABSTRACT Novel viral vectors that are able to induce both strong and long-lasting immune responses may be required as effective vaccines for human immunodeficiency virus type 1 (HIV-1) infection. Our previous experiments with a replication-competent vaccine strain-based rabies virus (RV) expressing HIV-1 envelope protein from a laboratory-adapted HIV-1 strain (NL4–3) and a primary HIV-1 isolate (89.6) showed that RV-based vectors are excellent for B-cell priming. Here we report that cytotoxic T-lymphocyte (CTL) responses against HIV-1 gp160 are induced by recombinant RVs. Our results indicated that a single inoculation of mice with an RV expressing HIV-1 gp160 induced a solid and long-lasting memory CTL response specific for HIV-1 envelope protein. Moreover, CTLs from immunized mice were not restricted to the homologous HIV-1 envelope protein and were able to cross-kill target cells expressing HIV-1 gp160 from heterologous HIV-1 strains. These studies further suggest promise for RV-based vectors to elicit a persistent immune response against HIV-1 and their potential utility as efficacious anti-HIV-1 vaccines.


2005 ◽  
Vol 79 (18) ◽  
pp. 12100-12105 ◽  
Author(s):  
Thillagavathie Pillay ◽  
Hua-Tang Zhang ◽  
Jan W. Drijfhout ◽  
Nicola Robinson ◽  
Helen Brown ◽  
...  

ABSTRACT The role of cytotoxic T-lymphocyte (CTL) escape in rapidly progressive infant human immunodeficiency virus type 1 (HIV-1) infection is undefined. The data presented here demonstrate that infant HIV-1-specific CTL can select for viral escape variants very early in life. These variants, furthermore, may be selected specifically in the infant, despite the same CTL specificity being present in the mother. Additionally, pediatric CTL activity may be compromised both by the transmission of maternal escape variants and by mother-to-child transmission of escape variants that originally arose in the father. The unique acquisition of these CTL escape forms may help to explain the severe nature of some pediatric HIV infections.


1998 ◽  
Vol 72 (4) ◽  
pp. 3472-3474 ◽  
Author(s):  
James M. Binley ◽  
Xia Jin ◽  
Yaoxing Huang ◽  
Linqi Zhang ◽  
Yunzhen Cao ◽  
...  

ABSTRACT Long-term nonprogressor AD-18 has been infected with human immunodeficiency virus type 1 (HIV-1) for at least 16 years. During the past 5 years, he has had undetectable levels of plasma viremia, and HIV-1 cannot be isolated from him. Sequencing of proviral DNA indicates that the only HIV-1 sequences that can be identified in AD-18 have gross defects in the p17-encoding regions of the gag gene (Y. Huang, L. Zhang, and D. D. Ho, Virology 240:36–49, 1998). However, AD-18 has strong, sustained antibody responses to several HIV-1 antigens, including p17. Cytotoxic T-lymphocyte responses to Env and Gag antigens have gradually diminished over the past 4 years, at a time when the titers of antibodies to the same proteins have remained stable. We discuss what these observations might mean for the generation and maintenance of immunological memory.


1999 ◽  
Vol 73 (8) ◽  
pp. 6721-6728 ◽  
Author(s):  
Spyros A. Kalams ◽  
Philip J. Goulder ◽  
Amy K. Shea ◽  
Norman G. Jones ◽  
Alicja K. Trocha ◽  
...  

ABSTRACT Therapeutic suppression of human immunodeficiency virus type 1 (HIV-1) replication may help elucidate interactions between the host cellular immune responses and HIV-1 infection. We performed a detailed longitudinal evaluation of two subjects before and after the start of highly active antiretroviral therapy (HAART). Both subjects had evidence of in vivo-activated and memory cytotoxic T-lymphocyte precursor (CTLp) activity against multiple HIV-1 gene products. After the start of therapy, both subjects had declines in the levels of in vivo-activated HIV-1-specific CTLs and had immediate increases in circulating HIV-1-specific CTL memory cells. With continued therapy, and continued suppression of viral load, levels of memory CTLps declined. HLA A*0201 peptide tetramer staining demonstrated that declining levels of in vivo-activated CTL activity were associated with a decrease in the expression of the CD38+ activation marker. Transient increases in viral load during continued therapy were associated with increases in the levels of virus-specific CTLps in both individuals. The results were confirmed by measuring CTL responses to discrete optimal epitopes. These studies illustrate the dynamic equilibrium between the host immune response and levels of viral antigen burden and suggest that efforts to augment HIV-1-specific immune responses in subjects on HAART may decrease the incidence of virologic relapse.


1999 ◽  
Vol 73 (8) ◽  
pp. 6715-6720 ◽  
Author(s):  
Spyros A. Kalams ◽  
S. P. Buchbinder ◽  
E. S. Rosenberg ◽  
J. M. Billingsley ◽  
D. S. Colbert ◽  
...  

ABSTRACT Cellular immune responses are thought to be an important antiviral host defense, but the relationship between virus-specific T-helper and cytotoxic-T-lymphocyte (CTL) responses has not been defined. To investigate a potential link between these responses, we examined functional human immunodeficiency virus type 1 (HIV-1)-specific memory CTL precursor frequencies and p24-specific proliferative responses in a cohort of infected untreated persons with a wide range of viral loads and CD4 cell counts. Levels of p24-specific proliferative responses positively correlated with levels of Gag-specific CTL precursors and negatively correlated with levels of plasma HIV-1 RNA. These data linking the levels of HIV-specific CTL with virus-specific helper cell function during chronic viral infection provide cellular immunologic parameters to guide therapeutic and prophylactic vaccine development.


2004 ◽  
Vol 78 (21) ◽  
pp. 11758-11765 ◽  
Author(s):  
Helen Piontkivska ◽  
Austin L. Hughes

ABSTRACT In human immunodeficiency virus type 1 (HIV-1), mutations that escape from cytotoxic T-lymphocyte (CTL) recognition have been documented, and sequence analyses have provided indirect support for the hypothesis that natural selection has favored CTL escape mutants within an infected host. In spite of such evidence for within-host selection by CTL, it has been more difficult to determine how natural selection by host CTL has influenced long-term evolution of HIV-1. We used statistical analysis of published HIV-1 genomic sequences to examine the role of natural selection in between-host evolution of CTL epitopes. Based on a phylogenetic analysis, we identified 21 pairs of closely related genomes isolated from different hosts and examined the pattern of nucleotide substitution in genomic regions encoding well-characterized CTL epitopes. The results revealed that certain CTL epitopes have been subject to repeated positive selection across the population, while others are generally conserved. Furthermore, evidence of positive selection was associated with divergence from the canonical epitope sequence and with an enhanced frequency of convergent amino acid sequence changes in CTL epitopes. The results support the hypothesis that CTL-driven selection has been a major factor in the long-term evolution of HIV-1.


2001 ◽  
Vol 75 (10) ◽  
pp. 4941-4946 ◽  
Author(s):  
F. Buseyne ◽  
M.-L. Chaix ◽  
C. Rouzioux ◽  
S. Blanche ◽  
Y. Rivière

ABSTRACT We tested seven human immunodeficiency virus-infected children for their cytotoxic T-lymphocyte (CTL) activities towards the p24 gag QASQEVKNW epitope and its nine variant sequences. Our data confirm that most, but not all, CTL responses are broadly cross-specific. For the first time, we show the high interpatient variability in cross-recognition of mutant CTL epitopes. These interindividual variations in the CTL response to the same epitope should be taken into account in the design and the evaluation of vaccines.


Sign in / Sign up

Export Citation Format

Share Document