ctl escape
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 4)

H-INDEX

24
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Mark Smyth ◽  
Kseniya Khamina ◽  
Alexandra Popa ◽  
Venugopal Gudipati ◽  
Benedikt Agerer ◽  
...  

Cytotoxic T lymphocytes (CTLs) represent key immune effectors of the host response against chronic viruses, due to their cytotoxic response to virus-infected cells. In response to this selection pressure, viruses may accumulate escape mutations that evade CTL-mediated control. To study the emergence of CTL escape mutations, we employed the murine chronic infection model of lymphocytic choriomeningitis virus (LCMV). We developed an amplicon-based next-generation sequencing pipeline to detect low frequency mutations in the viral genome and identified non-synonymous mutations in the immunodominant LCMV CTL epitope, GP33-41, in infected wildtype mice. Infected Rag2-deficient mice lacking CTLs did not contain such viral mutations. By using transgenic mice with T cell receptors specific to GP33-41, we characterized the emergence of viral mutations in this epitope under varying selection pressure. We investigated the two most abundant viral mutations by employing reverse genetically engineered viral mutants encoding the respective mutations. These experiments provided evidence that these mutations prevent activation and expansion of epitope-specific CD8 T cells. Our findings on the mutational dynamics of CTL escape mutations in a widely-studied viral infection model contributes to our understanding of how chronic viruses interact with their host and evade the immune response. This may guide the development of future treatments and vaccines against chronic infections.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1404
Author(s):  
Nametso Kelentse ◽  
Sikhulile Moyo ◽  
Mompati L. Mogwele ◽  
Doreen Ditshwanelo ◽  
Baitshepi Mokaleng ◽  
...  

HIV-1 compartmentalization in reservoir sites remains a barrier to complete HIV eradication. It is unclear whether there is variation in HIV-1 env and gag between cerebrospinal fluid (CSF) and plasma of individuals with HIV-associated cryptococcal meningitis (CM). We compared HIV-1 env characteristics and the gag cytotoxic T-lymphocyte (CTL) escape mutations from CSF and plasma samples. Employing population-based Sanger sequencing, we sequenced HIV-1 env from CSF of 25 patients and plasma of 26 patients. For gag, 15 CSF and 21 plasma samples were successfully sequenced. Of these, 18 and 9 were paired env and gag CSF/plasma samples, respectively. There was no statistically significant difference in the proportion of CCR5-using strains in the CSF and plasma, (p = 0.50). Discordant CSF/plasma virus co-receptor use was found in 2/18 pairs (11.1%). The polymorphisms in the HIV-1 V3 loop were concordant between the two compartments. From the HIV-1 gag sequences, three pairs had discordant CTL escape mutations in three different epitopes of the nine analyzed. These findings suggest little variation in the HIV-1 env between plasma and CSF and that the CCR5-using strains predominate in both compartments. HIV-1 gag CTL escape mutations also displayed little variation in CSF and plasma suggesting similar CTL selective pressure.


2019 ◽  
Author(s):  
Christopher J. R. Illingworth ◽  
Jayna Raghwani ◽  
David Serwadda ◽  
Nelson K. Sewankambo ◽  
Merlin L. Robb ◽  
...  

AbstractIn the absence of effective antiviral therapy, HIV-1 evolves in response to the within-host environment, of which the immune system is an important aspect. During the earliest stages of infection, this process of evolution is very rapid, driven by a small number of CTL escape mechanisms. As the infection progresses, immune escape variants evolve under reduced magnitudes of selection, while competition between an increasing number of polymorphic alleles (i.e., clonal interference) makes it difficult to quantify the magnitude of selection acting upon specific variant alleles. To tackle this complex problem, we developed a novel multi-locus inference method to evaluate the role of selection during the chronic stage of within-host infection. We applied this method to targeted sequence data from the p24 and gp41 regions of HIV-1 collected from 34 patients with long-term untreated HIV-1 infection. We identify a broad distribution of beneficial fitness effects during infection, with a small number of variants evolving under strong selection and very many variants evolving under weaker selection. The uniquely large number of infections analysed granted a previously unparalleled statistical power to identify loci at which selection could be inferred to act with statistical confidence. Our model makes no prior assumptions about the nature of alleles under selection, such that any synonymous or non-synonymous variant may be inferred to evolve under selection. However, the majority of variants inferred with confidence to be under selection were non-synonymous in nature, and in nearly all cases were associated with either CTL escape in p24 or neutralising antibody escape in gp41. Sites inferred to be under selection in multiple hosts have high within-host and between-host diversity albeit not all sites with high between-host diversity were inferred to be under selection at the within-host level. Our identification of selection at sites associated with resistance to broadly neutralising antibodies (bNAbs) highlights the need to fully understand the role of selection in untreated individuals when designing bNAb based therapies.Author SummaryDuring the within-host evolution of HIV-1, the diversity of the viral population increases, with many beneficial variants competing against each other. This competition, known as clonal interference, makes the identification of variants under positive selection a challenging task. We here apply a novel method for the inference of selection to targeted within-host sequence data describing changes in the p24 and gp41 genes during HIV-1 infection in 34 patients. Our method adopts a parsimonious approach, assigning selection to the smallest number of variants necessary to explain the evolution of the system. The large size of our dataset allows for the confident identification of variants under selection, alleles at certain loci being repeatedly inferred as under selection within multiple individuals. While early CTL escape mutations have been identified to evolve under strong positive selection, we identify a distribution of beneficial fitness effects in which a large number of mutations are under weak selection. Variants that were confidently identified under selection were primarily found to be associated with either CTL escape in p24 or neutralising antibody escape in gp41, including sites associated with escape from broadly neutralising antibodies. We find that the most frequently selected loci have high diversity both within-host and at the between-host level.


2019 ◽  
Author(s):  
Ruian Ke ◽  
Kai Deng

AbstractA major barrier to finding a cure for human immunodeficiency virus type-I (HIV-1) infection is the existence and persistence of the HIV-1 latent reservoir. Although the size of the reservoir is shown to be extremely stable under effective antiretroviral therapy, multiple lines of evidence suggest that the reservoir is composed of dynamic and heterogeneous subpopulations. Quantifying the dynamics of these subpopulations and the processes that maintain the latent reservoir is crucial to the development of effective strategies to eliminate this reservoir. Here, we constructed a mathematical model to consider four latently infected subpopulations, according to their ability to proliferate and the type of virus they are infected. Our model explains a wide range of clinical observations, including variable estimates of the reservoir half-life and dynamical turnover of cytotoxic T lymphocyte (CTL) escape viruses in the reservoir. It suggests that very early treatment leads to a reservoir that is small in size and is composed of less stable latently infected cells (compared to the reservoir in chronically infected individuals). The shorter half-lives estimated from individuals treated during acute infection is likely driven by cells that are less prone to proliferate; in contrast, the remarkably consistent estimate of the long half-lives in individuals who are treated during chronic infection are driven by fast proliferating cells that are likely to be infected by CTL escape mutants. Our model shed light on the dynamics of the reservoir in the absence and presence of antiretroviral therapy. More broadly, it can be used to estimate the turnover rates of subpopulations of the reservoir as well as to design and evaluate the impact of various therapeutic interventions to purge the HIV-1 reservoir.Author summaryHuman immunodeficiency virus (HIV) infects tens of millions of people globally and causes approximately a million death each year. Current treatment for HIV infection suppresses viral load but does not eradicates the virus. A major barrier to cure HIV infection is the existence and persistence of populations of cells that are latently infected by HIV, i.e. the HIV latent reservoir. Understanding and quantifying the kinetics of the reservoir is therefore critical for developing and evaluating effective therapies to purge the reservoir. Recent studies suggested that this reservoir is heterogenous in their population dynamics; yet most previous mathematical models consider this reservoir as a homogenous population. Here we developed a model explicitly tracking the heterogenous subpopulations of the reservoir. We show that this model explains a wide range of clinical observations, and then demonstrate its utility to make quantitative predictions about varies interventions that aim to restrict or reduce the size of the reservoir.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Claudia Alteri ◽  
Lavinia Fabeni ◽  
Rossana Scutari ◽  
Giulia Berno ◽  
Domenico Di Carlo ◽  
...  
Keyword(s):  

2017 ◽  
Vol 3 ◽  
pp. 26-27
Author(s):  
Z.L. Brumme ◽  
H. Sudderuddin ◽  
C. Ziemniak ◽  
K. Luzuriaga ◽  
C.K. Cunningham ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Yushen Du ◽  
Tian-Hao Zhang ◽  
Lei Dai ◽  
Xiaojuan Zheng ◽  
Aleksandr M. Gorin ◽  
...  

ABSTRACT Certain “protective” major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8+ cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape.


2016 ◽  
Vol 91 (4) ◽  
Author(s):  
Hayato Murakoshi ◽  
Madoka Koyanagi ◽  
Takayuki Chikata ◽  
Mohammad Arif Rahman ◽  
Nozomi Kuse ◽  
...  

ABSTRACT HLA-B*52:01-C*12:02, which is the most abundant haplotype in Japan, has a protective effect on disease progression in HIV-1-infected Japanese individuals, whereas HLA-B*57 and -B*27 protective alleles are very rare in Japan. A previous study on HLA-associated polymorphisms demonstrated that the number of HLA-B*52:01-associated mutations at four Pol positions was inversely correlated with plasma viral load (pVL) in HLA-B*52:01-negative individuals, suggesting that the transmission of HIV-1 with these mutations could modulate the pVL in the population. However, it remains unknown whether these mutations were selected by HLA-B*52:01-restricted CTLs and also reduced viral fitness. In this study, we identified two HLA-B*52:01-restricted and one HLA-C*12:02-restricted novel cytotoxic T-lymphocyte (CTL) epitopes in Pol. Analysis using CTLs specific for these three epitopes demonstrated that these CTLs failed to recognize mutant epitopes or more weakly recognized cells infected with mutant viruses than wild-type virus, supporting the idea that these mutations were selected by the HLA-B*52:01- or HLA-C*12:02-restricted T cells. We further showed that these mutations reduced viral fitness, although the effect of each mutation was weak. The present study demonstrated that the accumulation of these Pol mutations selected by HLA-B*52:01- or HLA-C*12:02-restricted CTLs impaired viral replication capacity and thus reduced the pVL. The fitness cost imposed by the mutations partially accounted for the effect of the HLA-B*52:01-C*12:02 haplotype on clinical outcome, together with the effect of HLA-B*52:01-restricted CTLs on viral replication, which had been previously demonstrated. IMPORTANCE Numerous population-based studies identified HLA-associated HIV-1 mutations to predict HIV-1 escape mutations from cytotoxic T lymphocytes (CTLs). However, the majority of these HLA-associated mutations have not been identified as CTL escape mutations. Our previous population-based study showed that five HLA-B*52:01-associated mutations at four Pol positions were inversely correlated with the plasma viral load in HLA-B*52:01-negative Japanese individuals. In the present study, we demonstrated that these mutations were indeed selected by CTLs specific for novel B*52:01- and C*12:02-restricted epitopes and that the accumulation of these mutations reduced the viral fitness in vitro. This study elucidated the mechanism by which the accumulation of these CTL escape mutations contributed to the protective effect of the HLA-B*52:01-HLA-C*12:02 haplotype on disease progression in HIV-1-infected Japanese individuals.


Sign in / Sign up

Export Citation Format

Share Document