scholarly journals Human T-Lymphotropic Virus Type 1 Mitochondrion-Localizing Protein p13II Sensitizes Jurkat T Cells to Ras-Mediated Apoptosis

2005 ◽  
Vol 79 (15) ◽  
pp. 9449-9457 ◽  
Author(s):  
Hajime Hiraragi ◽  
Bindhu Michael ◽  
Amrithraj Nair ◽  
Micol Silic-Benussi ◽  
Vincenzo Ciminale ◽  
...  

ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia. In addition to typical retroviral structural and enzymatic gene products, HTLV-1 encodes unique regulatory and accessory proteins, including a singly spliced pX open reading frame II (ORF II) product, p13II. We have demonstrated that proviral clones of HTLV-1 which are mutated in pX ORF II fail to obtain typical proviral loads and antibody responses in a rabbit animal model. p13II localizes to mitochondria and reduces cell growth and tumorigenicity in mice, but its function in human lymphocytes remains undetermined. For this study, we analyzed the functional properties of Jurkat T cells expressing p13II, using both transient and stable expression vectors. Our data indicate that p13II-expressing Jurkat T cells are sensitive to caspase-dependent, ceramide- and FasL-induced apoptosis. p13II-expressing Jurkat T cells also exhibited reduced proliferation when cultured at a high density. Furthermore, preincubation of the p13II-expressing cells with a farnesyl transferase inhibitor, which blocks the posttranslational modification of Ras, markedly reduced FasL-induced apoptosis, indicating the participation of the Ras pathway in p13II's influence on lymphocyte survival. Our data are the first to demonstrate that p13II alters Ras-mediated apoptosis in T lymphocytes, and they reveal a potential mechanism by which HTLV-1 alters lymphocyte proliferation.

2005 ◽  
Vol 96 (8) ◽  
pp. 527-533 ◽  
Author(s):  
Tomoko Kohno ◽  
Yasuaki Yamada ◽  
Norihiko Akamatsu ◽  
Simeru Kamihira ◽  
Yoshitaka Imaizumi ◽  
...  

2015 ◽  
Vol 57 (3) ◽  
pp. 685-691
Author(s):  
Izumi Masamoto ◽  
Makoto Yoshimitsu ◽  
Ayako Kuroki ◽  
Sawako Horai ◽  
Chibueze Chioma Ezinne ◽  
...  

1999 ◽  
Vol 73 (6) ◽  
pp. 4575-4581 ◽  
Author(s):  
Masahiko Makino ◽  
Satoshi Shimokubo ◽  
Shin-Ichi Wakamatsu ◽  
Shuji Izumo ◽  
Masanori Baba

ABSTRACT The development of human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is closely associated with the activation of T cells which are HTLV-1 specific but may cross-react with neural antigens (Ags). Immature dendritic cells (DCs), differentiated from normal donor monocytes by using recombinant granulocyte-macrophage colony-stimulating factor and recombinant interleukin-4, were pulsed with HTLV-1 in vitro. The pulsed DCs contained HTLV-1 proviral DNA and expressed HTLV-1 Gag Ag on their surface 6 days after infection. The DCs matured by lipopolysaccharides stimulated autologous CD4+ T cells and CD8+ T cells in a viral dose-dependent manner. However, the proliferation level of CD4+ T cells was five- to sixfold higher than that of CD8+ T cells. In contrast to virus-infected DCs, DCs pulsed with heat-inactivated virions activated only CD4+ T cells. To clarify the role of DCs in HAM/TSP development, monocytes from patients were cultured for 4 days in the presence of the cytokines. The expression of CD86 Ag on DCs was higher and that of CD1a Ag was more down-regulated than in DCs generated from normal monocytes. DCs from two of five patients expressed HTLV-1 Gag Ag. Furthermore, both CD4+ and CD8+ T cells from the patients were greatly stimulated by contact with autologous DCs pulsed with inactivated viral Ag as well as HTLV-1-infected DCs. These results suggest that DCs are susceptible to HTLV-1 infection and that their cognate interaction with T cells may contribute to the development of HAM/TSP.


2020 ◽  
Vol 13 (2) ◽  
pp. 802-806
Author(s):  
Tatsuro Jo ◽  
Yohei Kaneko ◽  
Takayuki Oishi ◽  
Kaori Matsuzaka ◽  
Haruna Shioya ◽  
...  

Herein, we present the case of a patient who suffered from adult T-cell leukemia/lymphoma (ATLL) and hepatocellular carcinoma (HCC) after obtaining a sustained virological response following treatment with a direct-acting antiviral (DAA) at different points in time. The patient went into complete remission (CR) for ATLL. Unfortunately, subsequent relapse of ATLL was observed. This situation was overcome using chemotherapy with pegylated interferon alpha-2b. Human T lymphotropic virus type 1 Tax-specific cytotoxic T lymphocytes (CTLs) were recognized after obtaining second CR, and those CTLs have been maintained for many years. After 4 years from the second CR, chronic hepatitis type C was treated with a DAA, and sustained virological response was attained. However, the occurrence of HCC was detected. Surprisingly, the tumor disappeared spontaneously. Hepatitis virus type C-specific CTLs were also detected in the patient. T-cell receptor (TCR) V beta gene repertoire analyses revealed oligoclonal expansion of effector and memory CTLs. The number of CTLs expressing the TCR V beta 13.1 has increased over the years since HCC occurrence. The activation and maintenance of anticancer cellular immunity may have allowed the patient to obtain long-term survival and overcome two lethal neoplasms.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2411-2420 ◽  
Author(s):  
Amir H. Sabouri ◽  
Koichiro Usuku ◽  
Daisuke Hayashi ◽  
Shuji Izumo ◽  
Yoshiro Ohara ◽  
...  

Abstract Despite abundant activated virus-specific cytotoxic T lymphocytes (CTLs), patients with human T-lymphotropic virus type 1 (HTLV-1)–associated myelopathy/tropical spastic paraparesis (HAM/TSP) showed a significantly higher frequency of infected T cells than did healthy virus carriers (HVCs). Here, we demonstrate that at a given proviral load, the frequency of CD8+ T cells that are negative for specific costimulatory molecules was significantly higher in HAM/TSP than in age-matched HVCs and uninfected healthy controls (HCs), whereas the frequency of intracellular perforin-positive CD8+ T cells was significantly lower in both HAM/TSP and HVCs than in HCs. An inverse correlation between HTLV-1 proviral load (PVL) and percent perforin-positive CD8+ T cells were observed only in disease-protective allele HLA-A*02–positive HVCs, but not in HAM/TSP patients, whether HLA-A*02 positive or negative, nor in HLA-A*02–negative HVCs. Significantly lower perforin expression was observed in HTLV-1–specific than in cytomegalovirus-specific CD8+ T cells. Majority of HTLV-1–specific CD8+ T cells in HVCs showed a CD28−CD27+ phenotype, whereas HAM/TSP showed a CD28−CD27− phenotype. HTLV-1–specific CD8+ T cells from HAM/TSP patients showed significantly lower degranulation than HVCs by CD107a mobilization assay. These findings suggest that an impaired function of HTLV-1–specific CTLs is associated with failing antiviral control and disease HAM/TSP.


1999 ◽  
Vol 73 (11) ◽  
pp. 9642-9649 ◽  
Author(s):  
Nathaniel D. Collins ◽  
Celine D’Souza ◽  
Björn Albrecht ◽  
Michael D. Robek ◽  
Lee Ratner ◽  
...  

ABSTRACT Human T-cell lymphotropic virus type 1 (HTLV-1), a complex retrovirus, encodes a hydrophobic 12-kD protein from pX open reading frame (ORF) I that localizes to cellular endomembranes and contains four minimal SH3 binding motifs (PXXP). We have demonstrated the importance of ORF I expression in the establishment of infection and hypothesize that p12I has a role in T-cell activation. In this study, we tested interleukin-2 (IL-2) receptor expression, IL-2-mediated proliferation, and Jak/Stat activation in T-cell lines immortalized with either wild-type or ORF I mutant clones of HTLV-1. All cell lines exhibited typical patterns of T-cell markers and maintained mutation fidelity. No significant differences between cell lines were observed in IL-2 receptor chain (α, β, or γc) expression, in IL-2-mediated proliferation, or in IL-2-induced phosphorylated forms of Stat3, Stat5, Jak1, or Jak3. The expression of ORF I is more likely to play a role in early HTLV-1 infection, such as in the activation of quiescent T cells in vivo.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2843-2843
Author(s):  
Huseini Hatimbhai Kagdi ◽  
Graham Phillip Taylor

Abstract Aggressive Adult T-cell leukemia/lymphoma (ATL), a human T lymphotropic virus type 1 (HTLV-1) -associated disease, has a poor prognosis. There is an urgent need for effective prevention and treatment. A large number of genomic aberrations including hundreds of somatic mutations and copy number changes are typically observed in ATL tumours, with certain genes, PLCG1, PRKCB, CCR4, CARD11, STAT3, TP53, VAV1, TBL1XR1, NOTCH1, GATA3 and IRF4 mutated in over 10% of cases(1). CD4+CCR4+CD26-CD7- is the dominant immunophenotype of lymphocytes in patients with ATL (ATL cells) but infected cells with similar immunophenotype ('ATL-like' cells) are also present in patients with non-malignant HTLV-1 infection(2, 3). Aggressive ATL develops in patients with non-malignant HTLV-1 (asymptomatic carriers (AC) and patients with HTLV-1 associated myelopathy (HAM)) over decades with evolution from high proviral load (PVL) and non-dominant clonal growth through emergence of dominant clones and indolent to aggressive ATL. HTLV-1 infected clones have been shown to have cells with mixed immunophenotype. The aim was to investigate specific genomic aberration associated with non-malignant HTLV-1 infection, dominant clonal growth and ATL. RNA sequencing followed by differential gene expression and mutational analysis of HTLV-1 and human genes was performed on sorted CD4+CCR4+CD26-CD7- cells from nine patients with ATL (four with indolent, four with aggressive ATL and one with indolent to aggressive transformation; ATL cells); and 18 patients with high PVL non-malignant HTLV-1 infection (three with dominant clones and 15 with non-dominant clones, 'ATL-like' infected cells). Seven antisense transcript of HTLV-1 genome was detected. A spliced antisense transcript spanning the whole HTLV-1 genome was detected in all samples whilst two novel transcripts were detected in > 2 samples. There was no significant difference in viral transcriptome expression between ATL and 'ATL-like' cells. A total of 13637 including 7952 well annotated human genes were detected within which 400 genes were significantly differentially expressed ( > 2 fold change and false discover rate < 0.1) between ATL and 'ATL-like' cells as shown in figure 1. Small nuclear RNA and endothelial cancer associated genes were upregulated in patients with ATL whilst T-cell, inflammatory, apoptosis and proliferation related genes were upregulated in patients with non-malignant HTLV-1 infection respectively. Principle component analysis did not showed any significant cluster but hierarchical analysis using differentially expressed genes showed clustering of ATL cells from patient with aggressive ATL, indolent ATL and 'ATL-like' cells from patients with non-malignant HTLV-1 infection (AC and HAM) of ATL as shown in figure 2. One out of three patient with high PVL non-malignant HTLV-1 infection and dominant clones (HKU) clustered with ATL and this patient progressed to ATL 12 months from sample data. Hallmark pathway analysis showed upregulation cluster in 'ATL-like' cells with only metabolism associated pathways clustered in ATL cells as shown in table 1. Expression of all recurrently mutated genes was detected and mutation analysis is currently underway. In summary, there is a major overlap of infected cell transcriptome in patient with non-malignant HTLV-1 infection and ATL. ATL cells have downregulation of T-cell, inflammatory, apoptosis and proliferation related genes compared to 'ATL-like' infected cells whilst upregulation of small nuclear RNAs. Transcriptome analysis in patient with high PVL non-malignant HTLV-1 infection might help in further prognostication in malignant risk.Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nature genetics. 2015;47(11):1304-15.Kagdi H, Demontis MA, Ramos JC, Taylor GP. Switching and loss of cellular cytokine producing capacity characterize in vivo viral infection and malignant transformation in human T- lymphotropic virus type 1 infection. PLoS pathogens. 2018;14(2):e1006861.Kagdi HH, Demontis MA, Fields PA, Ramos JC, Bangham CR, Taylor GP. Risk stratification of adult T-cell leukemia/lymphoma using immunophenotyping. Cancer medicine. 2017;6(1):298-309. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document