scholarly journals Herpes Simplex Virus Entry Mediator Associates in Infected Cells in a Complex with Viral Proteins gD and at Least gH

2005 ◽  
Vol 79 (7) ◽  
pp. 4540-4544 ◽  
Author(s):  
Pilar Perez-Romero ◽  
Aleida Perez ◽  
Althea Capul ◽  
Rebecca Montgomery ◽  
A. Oveta Fuller

ABSTRACT We examined herpes simplex virus (HSV)-infected human HEp-2 cells or porcine cells that express herpes virus entry mediator (HVEM) for virus and receptor protein interactions. Antibody to HVEM, or its viral ligand gD, coimmunoprecipitated several similar proteins. A prominent 110-kDa protein that coprecipitated was identified as gH. The HVEM/gD/gH complex was detected with mild or stringent cell lysis conditions. It did not form in cells infected with HSV-1(KOS)Rid1 virus or with null virus lacking gD, gH, or gL. Thus, in cells a complex forms through physical associations of HVEM, gD, and at least gH.

2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Jie Gao ◽  
Renée L. Finnen ◽  
Maxwell R. Sherry ◽  
Valerie Le Sage ◽  
Bruce W. Banfield

ABSTRACT Viral proteins pUL16 and pUL21 are required for efficient nuclear egress of herpes simplex virus 2 capsids. To better understand the role of these proteins in nuclear egress, we established whether nuclear egress complex (NEC) distribution and/or function was altered in the absence of either pUL16 or pUL21. NEC distribution in cells infected with pUL16-deficient viruses was indistinguishable from that observed in cells infected with wild-type viruses. In contrast, NEC distribution was aberrant in cells infected with pUL21-deficient virus and, instead, showed some similarity to the aberrant NEC distribution pattern observed in cells infected with pUs3-deficient virus. These results indicated that pUL16 plays a role in nuclear egress that is distinct from that of pUL21 and pUs3. Higher-resolution examination of nuclear envelope ultrastructure in cells infected with pUL21-deficient viruses by transmission electron microscopy showed different types of nuclear envelope perturbations, including some that were not observed in cells infected with pUs3 deficient virus. The formation of the nuclear envelope perturbations observed in pUL21-deficient virus infections was dependent on a functional NEC, revealing a novel role for pUL21 in regulating NEC activity. The results of comparisons of nuclear envelope ultrastructure in cells infected with viruses lacking pUs3, pUL16, or both pUs3 and pUL16 were consistent with a role for pUL16 in advance of primary capsid envelopment and shed new light on how pUs3 functions in nuclear egress. IMPORTANCE The membrane deformation activity of the herpesvirus nuclear egress complex (NEC) allows capsids to transit through both nuclear membranes into the cytoplasm. NEC activity must be precisely controlled during viral infection, and yet our knowledge of how NEC activity is controlled is incomplete. To determine how pUL16 and pUL21, two viral proteins required for nuclear egress of herpes simplex virus 2, function in nuclear egress, we examined how the lack of each protein impacted NEC distribution. These analyses revealed a function of pUL16 in nuclear egress distinct from that of pUL21, uncovered a novel role for pUL21 in regulating NEC activity, and shed new light on how a viral kinase, pUs3, regulates nuclear egress. Nuclear egress of capsids is required for all herpesviruses. A complete understanding of all aspects of nuclear egress, including how viral NEC activity is controlled, may yield strategies to disrupt this process and aid the development of herpes-specific antiviral therapies.


2009 ◽  
Vol 83 (24) ◽  
pp. 12725-12737 ◽  
Author(s):  
Luella Scholtes ◽  
Joel D. Baines

ABSTRACT The UL17 and UL25 proteins (pUL17 and pUL25, respectively) of herpes simplex virus 1 are located at the external surface of capsids and are essential for DNA packaging and DNA retention in the capsid, respectively. The current studies were undertaken to determine whether DNA packaging or capsid assembly affected the pUL17/pUL25 interaction. We found that pUL17 and pUL25 coimmunoprecipitated from cells infected with wild-type virus, whereas the major capsid protein VP5 (encoded by the UL19 gene) did not coimmunoprecipitate with these proteins under stringent conditions. In addition, pUL17 (i) coimmunoprecipitated with pUL25 in the absence of other viral proteins, (ii) coimmunoprecipitated with pUL25 from lysates of infected cells in the presence or absence of VP5, (iii) did not coimmunoprecipitate efficiently with pUL25 in the absence of the triplex protein VP23 (encoded by the UL18 gene), (iv) required pUL25 for proper solubilization and localization within the viral replication compartment, (v) was essential for the sole nuclear localization of pUL25, and (vi) required capsid proteins VP5 and VP23 for nuclear localization and normal levels of immunoreactivity in an indirect immunofluorescence assay. Proper localization of pUL25 in infected cell nuclei required pUL17, pUL32, and the major capsid proteins VP5 and VP23, but not the DNA packaging protein pUL15. The data suggest that VP23 or triplexes augment the pUL17/pUL25 interaction and that VP23 and VP5 induce conformational changes in pUL17 and pUL25, exposing epitopes that are otherwise partially masked in infected cells. These conformational changes can occur in the absence of DNA packaging. The data indicate that the pUL17/pUL25 complex requires multiple viral proteins and functions for proper localization and biochemical behavior in the infected cell.


2000 ◽  
Vol 74 (22) ◽  
pp. 10417-10429 ◽  
Author(s):  
C. C. Smith ◽  
J. Nelson ◽  
L. Aurelian ◽  
M. Gober ◽  
B. B. Goswami

ABSTRACT We used a herpes simplex virus type 2 (HSV-2) mutant with a deletion in the RR1 (ICP10) PK domain (ICP10ΔPK) and an MEK inhibitor (PD98059) to examine the role of ICP10 PK in virus growth. In HSV-2-infected cells, ICP10 PK binds and phosphorylates the GTPase activating protein Ras-GAP. In vitro binding and peptide competition assays indicated that Ras-GAP N-SH2 and PH domains, respectively, bind ICP10 at phosphothreonines 117 and 141 and a WD40-like motif at positions 160 to 173. Binding and phosphorylation did not occur in cells infected with ICP10ΔPK. GTPase activity was significantly lower in HSV-2- than in ICP10ΔPK-infected cells. Conversely, the levels of activated Ras and mitogen-activated protein kinase (MAPK), and the expression and stabilization of the transcription factor c-Fos were significantly increased in cells infected with HSV-2 or a revertant virus [HSV-2(R)] but not with ICP10ΔPK. PD98059 inhibited MAPK activation and induction-stabilization of c-Fos. Expression from the ICP10 promoter was increased in cells infected with HSV-2 but not with ICP10ΔPK, and increased expression was ablated by PD98059. ICP10 DNA formed a complex with nuclear extracts from HSV-2-infected cells which was supershifted by c-Fos antibody and was not seen with extracts from ICP10ΔPK-infected cells. Complex formation was abrogated by PD98059. Onset of HSV-2 replication was significantly delayed by PD98059 (14 h versus 2 h in untreated cells), a delay similar to that seen for ICP10ΔPK. The data indicate that Ras-GAP phosphorylation by ICP10 PK is involved in the activation of the Ras/MEK/MAPK mitogenic pathway and c-Fos induction and stabilization. This results in increased ICP10 expression and the timely onset of HSV-2 growth.


1999 ◽  
Vol 73 (2) ◽  
pp. 1704-1707 ◽  
Author(s):  
Kim M. Koslowski ◽  
Patti R. Shaver ◽  
James T. Casey ◽  
Todd Wilson ◽  
Gregory Yamanaka ◽  
...  

ABSTRACT Herpes simplex virus (HSV) DNA is cleaved from concatemers and packaged into capsids in infected cell nuclei. This process requires seven viral proteins, including UL15 and UL28. UL15 expressed alone displays a nuclear localization, while UL28 remains cytoplasmic. Coexpression with UL15 enables UL28 to enter nuclei, suggesting an interaction between the two proteins. Additionally, UL28 copurified with UL15 from HSV-infected cells after ion-exchange and DNA affinity chromatography, and the complex sedimented as a 1:1 heterodimer upon sucrose gradient centrifugation. These findings are evidence of a physical interaction of UL15 and UL28 and a functional role for UL15 in directing UL28 to the nucleus.


2008 ◽  
Vol 82 (21) ◽  
pp. 10591-10599 ◽  
Author(s):  
Lizette Olga Durand ◽  
Bernard Roizman

ABSTRACT ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) regulatory protein that regulates the accumulation of a subset of late (γ2) proteins exemplified by UL38, UL41, and US11. ICP22 binds the cyclin-dependent kinase 9 (cdk9) but not cdk7, and this complex in conjunction with viral protein kinases phosphorylates the carboxyl terminus of RNA polymerase II (Pol II) in vitro. The primary function of cdk9 and its partners, the cyclin T variants, is in the elongation of RNA transcripts, although functions related to the initiation and processing of transcripts have also been reported. We report two series of experiments designed to probe the role of cdk9 in infected cells. In the first, infected cells were treated with 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), a specific inhibitor of cdk9. In cells treated with DRB, the major effect was in the accumulation of viral RNAs and proteins regulated by ICP22. The accumulation of α, β, or γ proteins not regulated by ICP22 was not affected by the drug. The results obtained with DRB were duplicated in cells transfected with small interfering RNA (siRNA) targeting cdk9 mRNAs. Interestingly, DRB and siRNA reduced the levels of ICP22 but not those of other α gene products. In addition, cdk9 and ICP22 appeared to colocalize with RNA Pol II in wild-type-virus-infected cells but not in ΔUL13-infected cells. We conclude that cdk9 plays a critical role in the optimization of expression of genes regulated by ICP22 and that one function of cdk9 in HSV-1-infected cells may be to bring ICP22 into the RNA Pol II transcriptional complex.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Christos Dogrammatzis ◽  
Thibaut Deschamps ◽  
Maria Kalamvoki

ABSTRACTHerpes simplex virus 1 (HSV-1) infections afflict more than 80% of the population worldwide. The virus primarily infects mucoepithelial cells and establishes latent reservoirs in neurons in sensory ganglia. Frequent reactivation has been linked to severe diseases, especially in immunocompromised individuals. Earlier, we reported that viral and host factors are packaged in extracellular vesicles (EVs) and delivered to uninfected cells, where they activate antiviral responses and restrict virus infection. Here, we interrogated the effect of HSV-1 infection on EV biogenesis. We found that HSV-1 infection causes a decrease in the amount of intracellular CD63 protein with a concomitant increase in extracellular CD63. This observation correlates with our previous finding that infected cells release more CD63-positive EVs than uninfected cells. The stimulation of CD63 exocytosis requires virus replication. CD63 is a member of the tetraspanin family of proteins that traffics between the plasma membrane and endosomal compartments and has a role in sorting cargo into the EVs. Previously, we reported that in cells depleted of CD63, HSV-1 virus yields increased, and here we provide data showing that in cells overexpressing CD63, HSV-1 virus yields decreased. Taken together, our data indicate that CD63 negatively impacts HSV-1 infection and that the CD63-positive EVs could control the dissemination of the virus in the host. Perhaps EV release by HSV-1-infected cells is a mechanism that controls virus dissemination.IMPORTANCEIntercellular communication, especially in neurons, largely relies on EVs, and modulation of EVs is known to impact physiological processes. Here, we present evidence that HSV-1 infection causes major alterations in the biogenesis of EVs, including an increase in their number and an increase in the CD63-positive population of EVs. These alterations result in an enrichment of the milieu of infection with EVs carrying signatures from infected cells. In addition to changes in the origin and type, EVs released by infected cells have differences in cargo, as they carry viral and host factors determined by the virus. The tetraspanin CD63 negatively impacts the infection, as demonstrated by CD63-knockdown and overexpression assays. A proposed mechanism involves the activation of antiviral responses in cells receiving CD63-positive EVs released by infected cells. Overall, HSV-1 causes major alterations in EVs that could contribute to HSV-1 persistence and pathogenesis.


2005 ◽  
Vol 79 (13) ◽  
pp. 8470-8479 ◽  
Author(s):  
Alice P. W. Poon ◽  
Bernard Roizman

ABSTRACT The US3 open reading frame of herpes simplex virus 1 (HSV-1) was reported to encode two mRNAs each directing the synthesis of the same protein. We report that the US3 gene encodes two proteins. The predominant US3 protein is made in wild-type HSV-1-infected cells. The truncated mRNA and a truncated protein designated US3.5 and initiating from methionine 77 were preeminent in cells infected with a mutant lacking the gene encoding ICP22. Both the wild-type and truncated proteins also accumulated in cells transduced with a baculovirus carrying the entire US3 open reading frame. The US3.5 protein accumulating in cells infected with the mutant lacking the gene encoding ICP22 mediated the phosphorylation of histone deacetylase 1, a function of US3 protein, but failed to block apoptosis of the infected cells. The US3.5 and US3 proteins differ with respect to the range of functions they exhibit.


Sign in / Sign up

Export Citation Format

Share Document