scholarly journals Perturbations of Cell Cycle Control in T Cells Contribute to the Different Outcomes of Simian Immunodeficiency Virus Infection in Rhesus Macaques and Sooty Mangabeys

2006 ◽  
Vol 80 (2) ◽  
pp. 634-642 ◽  
Author(s):  
M. Paiardini ◽  
B. Cervasi ◽  
B. Sumpter ◽  
H. M. McClure ◽  
D. L. Sodora ◽  
...  

ABSTRACT In contrast to human immunodeficiency virus (HIV) infection of humans and experimental simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs), SIV infection of sooty mangabeys (SMs), a natural host African monkey species, is typically nonpathogenic and associated with preservation of CD4+ T-cell counts despite chronic high levels of viral replication. In previous studies, we have shown that the lack of SIV disease progression in SMs is related to lower levels of immune activation and bystander T-cell apoptosis compared to those of pathogenic HIV/SIV infection (G. Silvestri, D. Sodora, R. Koup, M. Paiardini, S. O’Neil, H. M. McClure, S. I. Staprans, and M. B. Feinberg, Immunity 18:441-452, 2003; G. Silvestri, A. Fedanov, S. Germon, N. Kozyr, W. J. Kaiser, D. A. Garber, H. M. McClure, M. B. Feinberg, and S. I. Staprans, J. Virol. 79:4043-4054, 2005). In HIV-infected patients, increased T-cell susceptibility to apoptosis is associated with a complex cell cycle dysregulation (CCD) that involves increased activation of the cyclin B/p34-cdc2 complex and abnormal nucleolar structure with dysregulation of nucleolin turnover. Here we report that CCD is also present during pathogenic SIV infection of RMs, and its extent correlates with the level of immune activation and T-cell apoptosis. In marked contrast, naturally SIV-infected SMs show normal regulation of cell cycle control (i.e., normal intracellular levels of cyclin B and preserved nucleolin turnover) and a low propensity to apoptosis in both peripheral blood- and lymph node-derived T cells. The absence of significant CCD in the AIDS-free, non-immune-activated SMs despite high levels of viral replication indicates that CCD is a marker of disease progression during lentiviral infection and supports the hypothesis that the preservation of cell cycle control may help to confer the disease-resistant phenotype of SIV-infected SMs.

2000 ◽  
Vol 74 (3) ◽  
pp. 1209-1223 ◽  
Author(s):  
Lisa A. Chakrabarti ◽  
Sharon R. Lewin ◽  
Linqi Zhang ◽  
Agegnehu Gettie ◽  
Amara Luckay ◽  
...  

ABSTRACT Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) remain healthy though they harbor viral loads comparable to those in rhesus macaques that progress to AIDS. To assess the immunologic basis of disease resistance in mangabeys, we compared the effect of SIV infection on T-cell regeneration in both monkey species. Measurement of the proliferation marker Ki-67 by flow cytometry showed that mangabeys harbored proliferating T cells at a level of 3 to 4% in peripheral blood irrespective of their infection status. In contrast, rhesus macaques demonstrated a naturally high fraction of proliferating T cells (7%) that increased two- to threefold following SIV infection. Ki-67+ T cells were predominantly CD45RA−, indicating increased proliferation of memory cells in macaques. Quantitation of an episomal DNA product of T-cell receptor α rearrangement (termed α1 circle) showed that the concentration of recent thymic emigrants in blood decreased with age over a 2-log unit range in both monkey species, consistent with age-related thymic involution. SIV infection caused a limited decrease of α1 circle numbers in mangabeys as well as in macaques. Dilution of α1 circles by T-cell proliferation likely contributed to this decrease, since α1 circle numbers and Ki-67+ fractions correlated negatively. These findings are compatible with immune exhaustion mediated by abnormal T-cell proliferation, rather than with early thymic failure, in SIV-infected macaques. Normal T-cell turnover in SIV-infected mangabeys provides an explanation for the long-term maintenance of a functional immune system in these hosts.


2007 ◽  
Vol 81 (9) ◽  
pp. 4445-4456 ◽  
Author(s):  
L. E. Pereira ◽  
F. Villinger ◽  
N. Onlamoon ◽  
P. Bryan ◽  
A. Cardona ◽  
...  

ABSTRACT Differences in clinical outcome of simian immunodeficiency virus (SIV) infection in disease-resistant African sooty mangabeys (SM) and disease-susceptible Asian rhesus macaques (RM) prompted us to examine the role of regulatory T cells (Tregs) in these two animal models. Results from a cross-sectional study revealed maintenance of the frequency and absolute number of peripheral Tregs in chronically SIV-infected SM while a significant loss occurred in chronically SIV-infected RM compared to uninfected animals. A longitudinal study of experimentally SIV-infected animals revealed a transient increase in the frequency of Tregs from baseline values following acute infection in RM, but no change in the frequency of Tregs occurred in SM during this period. Further examination revealed a strong correlation between plasma viral load (VL) and the level of Tregs in SIV-infected RM but not SM. A correlation was also noted in SIV-infected RM that control VL spontaneously or in response to antiretroviral chemotherapy. In addition, immunofluorescent cell count assays showed that while Treg-depleted peripheral blood mononuclear cells from RM led to a significant enhancement of CD4+ and CD8+ T-cell responses to select pools of SIV peptides, there was no detectable T-cell response to the same pool of SIV peptides in Treg-depleted cells from SIV-infected SM. Our data collectively suggest that while Tregs do appear to play a role in the control of viremia and the magnitude of the SIV-specific immune response in RM, their role in disease resistance in SM remains unclear.


2010 ◽  
Vol 84 (21) ◽  
pp. 11569-11574 ◽  
Author(s):  
Nicholas J. Maness ◽  
Andrew D. Walsh ◽  
Shari M. Piaskowski ◽  
Jessica Furlott ◽  
Holly L. Kolar ◽  
...  

ABSTRACT Vaccines designed to elicit AIDS virus-specific CD8+ T cells should engender broad responses. Emerging data indicate that alternate reading frames (ARFs) of both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) encode CD8+ T cell epitopes, termed cryptic epitopes. Here, we show that SIV-specific CD8+ T cells from SIV-infected rhesus macaques target 14 epitopes in eight ARFs during SIV infection. Animals recognized up to five epitopes, totaling nearly one-quarter of the anti-SIV responses. The epitopes were targeted by high-frequency responses as early as 2 weeks postinfection and in the chronic phase. Hence, previously overlooked ARF-encoded epitopes could be important components of AIDS vaccines.


2004 ◽  
Vol 78 (3) ◽  
pp. 1464-1472 ◽  
Author(s):  
Pavel Bostik ◽  
Geraldine L. Dodd ◽  
Francois Villinger ◽  
Ann E. Mayne ◽  
Aftab A. Ansari

ABSTRACT CD4+ T-cell dysfunction highlighted by defects within the intracellular signaling cascade and cell cycle has long been characterized as a direct and/or indirect consequence of human immunodeficiency virus (HIV) infection in humans and simian immunodeficiency virus (SIV) infection in rhesus macaques (RM). Dysregulation of the M phase of the cell cycle is a well-documented effect of HIV or SIV infection both in vivo and in vitro. In this study the effect of SIV infection on the modulation of two important regulators of the M phase—polo-like kinases Plk3 and Plk1—was investigated. We have previously shown that Plk3 is markedly downregulated in CD4+ T cells from SIV-infected disease-susceptible RM but not SIV-infected disease-resistant sooty mangabeys (SM), denoting an association of downregulation with disease progression. Here we show that, in addition to the downregulation, Plk3 exhibits aberrant activation patterns in the CD4+ T cells from SIV-infected RM following T-cell receptor stimulation. Interestingly, in vitro SIV infection of CD4+ T cells leads to the upregulation, rather than downregulation, of Plk3, suggesting that different mechanisms operate in vitro and in vivo. In addition, CD4+ T cells from RM with high viral loads exhibited consistent and significant upregulation of Plk1, concurrent with an aberrant activation-induced Plk1 response, suggesting complex mechanisms of SIV-induced M-phase abnormalities in vivo. Altogether this study presents a novel mechanism underlying M-phase defects observed in CD4+ T cells from HIV or SIV-infected disease-susceptible humans and RM which may contribute to aberrant T-cell responses and disease pathogenesis.


2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Alexis Yero ◽  
Omar Farnos ◽  
Henintsoa Rabezanahary ◽  
Gina Racine ◽  
Jérôme Estaquier ◽  
...  

ABSTRACT Increased frequencies of immunosuppressive regulatory T cells (Tregs) are associated with gut lymphoid tissue fibrosis and dysfunction which, in turn, contribute to disease progression in chronic simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) infection. Mesenteric lymph nodes (MLNs), which drain the large and small intestine, are critical sites for the induction and maintenance of gut mucosal immunity. However, the dynamics of Tregs in MLNs are not well understood due to the lack of accessibility to these tissues in HIV-infected individuals. Here, the dynamics of Tregs in blood and MLNs were assessed in SIV-infected rhesus macaques (RMs) following early antiretroviral drug (ARV) initiation. Early ARV initiation reduced T-cell immune activation, as assessed by HLA-DR/CD39 expression, and prevented the depletion of memory CCR6+ Th17 cells in both blood and MLNs. Untreated animals showed higher frequencies of Tregs, CD39+ Tregs, thymic Tregs, and new memory CD4 populations sharing similarity with Tregs as CTLA4+ PD1– and CTLA4+ PD1– FoxP3+ T cells. Despite early ARV treatment, the frequencies of these Treg subsets remained unchanged within the MLNs and, in contrast to blood normalization, the Th17/Treg ratio remained distorted in MLNs. Furthermore, our results highlighted that the expressions of IDO-1, TGFβ1 and collagen-1 mRNA remained unchanged in MLN of ARV-treated RMs. ARV interruption did not affect T-cell immune activation and Th17/Treg ratios in MLN. Altogether, our data demonstrated that early ARV initiation within the first few days of SIV infection is unable to reduce the frequencies and homing of various subsets of Tregs within the MLNs which, in turn, may result in tissue fibrosis, impairment in MLN function, and HIV persistence. IMPORTANCE Tregs contribute to SIV/HIV disease progression by inhibition of antiviral specific responses and effector T-cell proliferation. Tregs also cause tissue fibrosis via transforming growth factor β1 production and collagen deposition, which are associated with microbial translocation and generalized immune activation. Early ARV initiation upon viral exposure is recommended globally and results in improved immune function recovery and reduced viral persistence. Here, using an acute SIV infection model of rhesus macaques, we demonstrated for the first time that despite clear improvements in mucosal CD4 T cells, in contrast to blood, Treg frequencies in MLNs remained elevated following early ARV initiation. The particular Th17/Treg balance observed in MLNs can contribute, in part, to the maintenance of mucosal fibrosis during suppressive ARV treatment. Our results provide a better understanding of gut mucosal immune dynamics following early ARV initiation. These findings suggest that Treg-based treatments could serve as a novel immunotherapeutic approach to decrease gut mucosal damage during SIV/HIV infections.


Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 1174-1181 ◽  
Author(s):  
Xiaolei Wang ◽  
Terri Rasmussen ◽  
Bapi Pahar ◽  
Bhawna Poonia ◽  
Xavier Alvarez ◽  
...  

Abstract Rapid, profound, and selective depletion of memory CD4+ T cells has now been confirmed to occur in simian immunodeficiency virus (SIV)–infected adult macaques and human immunodeficiency virus (HIV)–infected humans. Within days of infection, marked depletion of memory CD4+ T cells occurs primarily in mucosal tissues, the major reservoir for memory CD4+ T cells in adults. However, HIV infection in neonates often results in higher viral loads and rapid disease progression, despite the paucity of memory CD4+ T cells in the peripheral blood. Here, we examined the immunophenotype of CD4+ T cells in normal and SIV-infected neonatal macaques to determine the distribution of naive and memory T-cell subsets in tissues. We demonstrate that, similar to adults, neonates have abundant memory CD4+ T cells in the intestinal tract and spleen and that these are selectively infected and depleted in primary SIV infection. Within 12 days of SIV infection, activated (CD69+), central memory (CD95+CD28+) CD4+ T cells are marked and persistently depleted in the intestine and other tissues of neonates compared with controls. The results in dicate that “activated” central memory CD4+ T cells are the major target for early SIV infection and CD4+ T cell depletion in neonatal macaques.


2010 ◽  
Vol 84 (7) ◽  
pp. 3259-3269 ◽  
Author(s):  
Kristina Allers ◽  
Christoph Loddenkemper ◽  
Jörg Hofmann ◽  
Anett Unbehaun ◽  
Désirée Kunkel ◽  
...  

ABSTRACT The gastrointestinal tract represents a major site for human and simian immunodeficiency virus (HIV and SIV) replication and CD4+ T-cell depletion. Despite severe depletion of mucosal CD4+ T cells, FOXP3+ regulatory CD4+ T cells (Treg) are highly increased in the gut mucosa of chronically HIV-infected individuals and may contribute to HIV pathogenesis, either by their immunosuppressive function or as a significant target cell population for virus production. Little is known about the susceptibility of mucosal Treg to viral infection and the longitudinal effect of HIV/SIV infection on Treg dynamics. In this study, we determined the level of SIV infection in Treg and nonregulatory CD4+ T cells (non-Treg) isolated from the colon of SIV-infected rhesus macaques. The dynamics of mucosal Treg and alterations in the mucosal CD4+ T-cell pool were examined longitudinally. Our findings indicate that mucosal Treg were less susceptible to productive SIV infection than non-Treg and thus were selectively spared from SIV-mediated cell death. In addition to improved survival, local expansion of Treg by SIV-induced proliferation of the mucosal CD4+ T-cell pool facilitated the accumulation of mucosal Treg during the course of infection. High frequency of mucosal Treg in chronic SIV infection was strongly related to a reduction of perforin-expressing cells. In conclusion, this study suggests that mucosal Treg are less affected by productive SIV infection than non-Treg and therefore spared from depletion. Although SIV production is limited in mucosal Treg, Treg accumulation may indirectly contribute to viral persistence by suppressing antiviral immune responses.


2021 ◽  
Author(s):  
Mary Susan Pampusch ◽  
Hadia M Abdelaal ◽  
Emily K Cartwright ◽  
Jhomary S Molden ◽  
Brianna C Davey ◽  
...  

During chronic human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection prior to AIDS progression, the vast majority of viral replication is concentrated within B cell follicles of secondary lymphoid tissues. We investigated whether infusion of T cells expressing an SIV-specific chimeric antigen receptor (CAR) and the follicular homing receptor, CXCR5, could successfully kill viral-RNA + cells in targeted lymphoid follicles in SIV-infected rhesus macaques. In this study, CD4 and CD8 T cells from rhesus macaques were genetically modified to express antiviral CAR and CXCR5 moieties (generating CAR/CXCR5-T cells) and autologously infused into a chronically infected animal. At 2 days post-treatment, the CAR/CXCR5-T cells were located primarily in spleen and lymph nodes both inside and outside of lymphoid follicles. Few CAR/CXCR5-T cells were detected in the rectum and lung, and no cells were detected in the bone marrow, liver, brain, or ileum. Within follicles, CAR/CXCR5-T cells were found in direct contact with SIV viral RNA+ cells. We next infused CAR/CXCR5-T cells into ART-suppressed SIV-infected rhesus macaques, in which the animals were released from ART at the time of infusion. These CAR/CXCR5-T cells replicated in vivo within both the extrafollicular and follicular regions of lymph nodes and accumulated within lymphoid follicles. CAR/CXR5-T cell concentrations in follicles peaked during the first week post-infusion but declined to undetectable levels after 2 to 4 weeks. Overall, CAR/CXCR5-T cell-treated animals maintained lower viral loads and follicular viral RNA levels than untreated control animals, and no outstanding adverse reactions were noted. These findings indicate that CAR/CXCR5-T cell treatment is safe and holds promise as a future treatment for the durable remission of HIV.


2007 ◽  
Vol 81 (24) ◽  
pp. 13865-13875 ◽  
Author(s):  
V. Monceaux ◽  
L. Viollet ◽  
F. Petit ◽  
M. C. Cumont ◽  
G. R. Kaufmann ◽  
...  

ABSTRACT Simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) provides a reliable model to study the relationship between lentivirus replication, cellular immune responses, and CD4+ T-cell dynamics. Here we investigated, using SIVmac251-infected RMs of a Chinese genetic background (which experience a slower disease progression than Indian RMs), the dynamics of CD4+ CCR5+ T cells, as this subset of memory/activated CD4+ T cells is both a preferential target of virus replication and a marker of immune activation. As expected, we observed that the number of circulating CD4+ CCR5+ T cells decreases transiently at the time of peak viremia. However, at 60 days postinfection, i.e., when set-point viremia is established, the level of CD4+ CCR5+ T cells was increased compared to the baseline level. Interestingly, this increase correlated with faster disease progression, higher plasma viremia, and early loss of CD4+ T-cell function, as measured by CD4+ T-cell count, the fraction of memory CD4+ T cells, and the recall response to purified protein derivative. Taken together, these data show a key difference between the dynamics of the CD4+ CCR5+ T-cell pool (and its relationship with disease progression) in Chinese RMs and those described in previous reports for Indian SIVmac251-infected RMs. As the SIV-associated changes in the CD4+ CCR5+ T-cell pool reflect the opposing forces of SIV replication (which reduces this cellular pool) and immune activation (which increases it), our data suggest that in SIV-infected Chinese RMs the impact of immune activation is more prominent than that of virus replication in determining the size of the pool of CD4+ CCR5+ T cells in the periphery. As progression of HIV infection in humans also is associated with a relative expansion of the level of CD4+ CCR5+ T cells, we propose that SIV infection of Chinese RMs is a very valuable and important animal model for understanding the pathogenesis of human immunodeficiency virus infection.


Sign in / Sign up

Export Citation Format

Share Document