scholarly journals CD4+ CCR5+ T-Cell Dynamics during Simian Immunodeficiency Virus Infection of Chinese Rhesus Macaques

2007 ◽  
Vol 81 (24) ◽  
pp. 13865-13875 ◽  
Author(s):  
V. Monceaux ◽  
L. Viollet ◽  
F. Petit ◽  
M. C. Cumont ◽  
G. R. Kaufmann ◽  
...  

ABSTRACT Simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) provides a reliable model to study the relationship between lentivirus replication, cellular immune responses, and CD4+ T-cell dynamics. Here we investigated, using SIVmac251-infected RMs of a Chinese genetic background (which experience a slower disease progression than Indian RMs), the dynamics of CD4+ CCR5+ T cells, as this subset of memory/activated CD4+ T cells is both a preferential target of virus replication and a marker of immune activation. As expected, we observed that the number of circulating CD4+ CCR5+ T cells decreases transiently at the time of peak viremia. However, at 60 days postinfection, i.e., when set-point viremia is established, the level of CD4+ CCR5+ T cells was increased compared to the baseline level. Interestingly, this increase correlated with faster disease progression, higher plasma viremia, and early loss of CD4+ T-cell function, as measured by CD4+ T-cell count, the fraction of memory CD4+ T cells, and the recall response to purified protein derivative. Taken together, these data show a key difference between the dynamics of the CD4+ CCR5+ T-cell pool (and its relationship with disease progression) in Chinese RMs and those described in previous reports for Indian SIVmac251-infected RMs. As the SIV-associated changes in the CD4+ CCR5+ T-cell pool reflect the opposing forces of SIV replication (which reduces this cellular pool) and immune activation (which increases it), our data suggest that in SIV-infected Chinese RMs the impact of immune activation is more prominent than that of virus replication in determining the size of the pool of CD4+ CCR5+ T cells in the periphery. As progression of HIV infection in humans also is associated with a relative expansion of the level of CD4+ CCR5+ T cells, we propose that SIV infection of Chinese RMs is a very valuable and important animal model for understanding the pathogenesis of human immunodeficiency virus infection.

2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Alexis Yero ◽  
Omar Farnos ◽  
Henintsoa Rabezanahary ◽  
Gina Racine ◽  
Jérôme Estaquier ◽  
...  

ABSTRACT Increased frequencies of immunosuppressive regulatory T cells (Tregs) are associated with gut lymphoid tissue fibrosis and dysfunction which, in turn, contribute to disease progression in chronic simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) infection. Mesenteric lymph nodes (MLNs), which drain the large and small intestine, are critical sites for the induction and maintenance of gut mucosal immunity. However, the dynamics of Tregs in MLNs are not well understood due to the lack of accessibility to these tissues in HIV-infected individuals. Here, the dynamics of Tregs in blood and MLNs were assessed in SIV-infected rhesus macaques (RMs) following early antiretroviral drug (ARV) initiation. Early ARV initiation reduced T-cell immune activation, as assessed by HLA-DR/CD39 expression, and prevented the depletion of memory CCR6+ Th17 cells in both blood and MLNs. Untreated animals showed higher frequencies of Tregs, CD39+ Tregs, thymic Tregs, and new memory CD4 populations sharing similarity with Tregs as CTLA4+ PD1– and CTLA4+ PD1– FoxP3+ T cells. Despite early ARV treatment, the frequencies of these Treg subsets remained unchanged within the MLNs and, in contrast to blood normalization, the Th17/Treg ratio remained distorted in MLNs. Furthermore, our results highlighted that the expressions of IDO-1, TGFβ1 and collagen-1 mRNA remained unchanged in MLN of ARV-treated RMs. ARV interruption did not affect T-cell immune activation and Th17/Treg ratios in MLN. Altogether, our data demonstrated that early ARV initiation within the first few days of SIV infection is unable to reduce the frequencies and homing of various subsets of Tregs within the MLNs which, in turn, may result in tissue fibrosis, impairment in MLN function, and HIV persistence. IMPORTANCE Tregs contribute to SIV/HIV disease progression by inhibition of antiviral specific responses and effector T-cell proliferation. Tregs also cause tissue fibrosis via transforming growth factor β1 production and collagen deposition, which are associated with microbial translocation and generalized immune activation. Early ARV initiation upon viral exposure is recommended globally and results in improved immune function recovery and reduced viral persistence. Here, using an acute SIV infection model of rhesus macaques, we demonstrated for the first time that despite clear improvements in mucosal CD4 T cells, in contrast to blood, Treg frequencies in MLNs remained elevated following early ARV initiation. The particular Th17/Treg balance observed in MLNs can contribute, in part, to the maintenance of mucosal fibrosis during suppressive ARV treatment. Our results provide a better understanding of gut mucosal immune dynamics following early ARV initiation. These findings suggest that Treg-based treatments could serve as a novel immunotherapeutic approach to decrease gut mucosal damage during SIV/HIV infections.


2010 ◽  
Vol 84 (7) ◽  
pp. 3259-3269 ◽  
Author(s):  
Kristina Allers ◽  
Christoph Loddenkemper ◽  
Jörg Hofmann ◽  
Anett Unbehaun ◽  
Désirée Kunkel ◽  
...  

ABSTRACT The gastrointestinal tract represents a major site for human and simian immunodeficiency virus (HIV and SIV) replication and CD4+ T-cell depletion. Despite severe depletion of mucosal CD4+ T cells, FOXP3+ regulatory CD4+ T cells (Treg) are highly increased in the gut mucosa of chronically HIV-infected individuals and may contribute to HIV pathogenesis, either by their immunosuppressive function or as a significant target cell population for virus production. Little is known about the susceptibility of mucosal Treg to viral infection and the longitudinal effect of HIV/SIV infection on Treg dynamics. In this study, we determined the level of SIV infection in Treg and nonregulatory CD4+ T cells (non-Treg) isolated from the colon of SIV-infected rhesus macaques. The dynamics of mucosal Treg and alterations in the mucosal CD4+ T-cell pool were examined longitudinally. Our findings indicate that mucosal Treg were less susceptible to productive SIV infection than non-Treg and thus were selectively spared from SIV-mediated cell death. In addition to improved survival, local expansion of Treg by SIV-induced proliferation of the mucosal CD4+ T-cell pool facilitated the accumulation of mucosal Treg during the course of infection. High frequency of mucosal Treg in chronic SIV infection was strongly related to a reduction of perforin-expressing cells. In conclusion, this study suggests that mucosal Treg are less affected by productive SIV infection than non-Treg and therefore spared from depletion. Although SIV production is limited in mucosal Treg, Treg accumulation may indirectly contribute to viral persistence by suppressing antiviral immune responses.


2000 ◽  
Vol 74 (3) ◽  
pp. 1209-1223 ◽  
Author(s):  
Lisa A. Chakrabarti ◽  
Sharon R. Lewin ◽  
Linqi Zhang ◽  
Agegnehu Gettie ◽  
Amara Luckay ◽  
...  

ABSTRACT Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) remain healthy though they harbor viral loads comparable to those in rhesus macaques that progress to AIDS. To assess the immunologic basis of disease resistance in mangabeys, we compared the effect of SIV infection on T-cell regeneration in both monkey species. Measurement of the proliferation marker Ki-67 by flow cytometry showed that mangabeys harbored proliferating T cells at a level of 3 to 4% in peripheral blood irrespective of their infection status. In contrast, rhesus macaques demonstrated a naturally high fraction of proliferating T cells (7%) that increased two- to threefold following SIV infection. Ki-67+ T cells were predominantly CD45RA−, indicating increased proliferation of memory cells in macaques. Quantitation of an episomal DNA product of T-cell receptor α rearrangement (termed α1 circle) showed that the concentration of recent thymic emigrants in blood decreased with age over a 2-log unit range in both monkey species, consistent with age-related thymic involution. SIV infection caused a limited decrease of α1 circle numbers in mangabeys as well as in macaques. Dilution of α1 circles by T-cell proliferation likely contributed to this decrease, since α1 circle numbers and Ki-67+ fractions correlated negatively. These findings are compatible with immune exhaustion mediated by abnormal T-cell proliferation, rather than with early thymic failure, in SIV-infected macaques. Normal T-cell turnover in SIV-infected mangabeys provides an explanation for the long-term maintenance of a functional immune system in these hosts.


2010 ◽  
Vol 84 (21) ◽  
pp. 11569-11574 ◽  
Author(s):  
Nicholas J. Maness ◽  
Andrew D. Walsh ◽  
Shari M. Piaskowski ◽  
Jessica Furlott ◽  
Holly L. Kolar ◽  
...  

ABSTRACT Vaccines designed to elicit AIDS virus-specific CD8+ T cells should engender broad responses. Emerging data indicate that alternate reading frames (ARFs) of both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) encode CD8+ T cell epitopes, termed cryptic epitopes. Here, we show that SIV-specific CD8+ T cells from SIV-infected rhesus macaques target 14 epitopes in eight ARFs during SIV infection. Animals recognized up to five epitopes, totaling nearly one-quarter of the anti-SIV responses. The epitopes were targeted by high-frequency responses as early as 2 weeks postinfection and in the chronic phase. Hence, previously overlooked ARF-encoded epitopes could be important components of AIDS vaccines.


2012 ◽  
Vol 209 (4) ◽  
pp. 641-651 ◽  
Author(s):  
Afam A. Okoye ◽  
Mukta Rohankhedkar ◽  
Chike Abana ◽  
Audrie Pattenn ◽  
Matthew Reyes ◽  
...  

The development of AIDS in chronic HIV/simian immunodeficiency virus (SIV) infection has been closely linked to progressive failure of CD4+ memory T cell (TM) homeostasis. CD4+ naive T cells (TN) also decline in these infections, but their contribution to disease progression is less clear. We assessed the role of CD4+ TN in SIV pathogenesis using rhesus macaques (RMs) selectively and permanently depleted of CD4+ TN before SIV infection. CD4+ TN-depleted and CD4+ TN-repleted RMs were created by subjecting juvenile RMs to thymectomy versus sham surgery, respectively, followed by total CD4+ T cell depletion and recovery from this depletion. Although thymectomized and sham-treated RMs manifested comparable CD4+ TM recovery, only sham-treated RMs reconstituted CD4+ TN. CD4+ TN-depleted RMs responded to SIVmac239 infection with markedly attenuated SIV-specific CD4+ T cell responses, delayed SIVenv-specific Ab responses, and reduced SIV-specific CD8+ T cell responses. However, CD4+ TN-depleted and -repleted groups showed similar levels of SIV replication. Moreover, CD4+ TN deficiency had no significant effect on CD4+ TM homeostasis (either on or off anti-retroviral therapy) or disease progression. These data demonstrate that the CD4+ TN compartment is dispensable for CD4+ TM homeostasis in progressive SIV infection, and they confirm that CD4+ TM comprise a homeostatically independent compartment that is intrinsically capable of self-renewal.


2015 ◽  
Vol 89 (20) ◽  
pp. 10156-10175 ◽  
Author(s):  
Matthew W. Breed ◽  
Samra E. Elser ◽  
Workineh Torben ◽  
Andrea P. O. Jordan ◽  
Pyone P. Aye ◽  
...  

ABSTRACTDeletion of Gly-720 and Tyr-721 from a highly conserved GYxxØ trafficking signal in the SIVmac239 envelope glycoprotein cytoplasmic domain, producing a virus termed ΔGY, leads to a striking perturbation in pathogenesis in rhesus macaques (Macaca mulatta). Infected macaques develop immune activation and progress to AIDS, but with only limited and transient infection of intestinal CD4+T cells and an absence of microbial translocation. Here we evaluated ΔGY in pig-tailed macaques (Macaca nemestrina), a species in which SIVmac239 infection typically leads to increased immune activation and more rapid progression to AIDS than in rhesus macaques. In pig-tailed macaques, ΔGY also replicated acutely to high peak plasma RNA levels identical to those for SIVmac239 and caused only transient infection of CD4+T cells in the gut lamina propria and no microbial translocation. However, in marked contrast to rhesus macaques, 19 of 21 pig-tailed macaques controlled ΔGY replication with plasma viral loads of <15 to 50 RNA copies/ml. CD4+T cells were preserved in blood and gut for up to 100 weeks with no immune activation or disease progression. Robust antiviral CD4+T cell responses were seen, particularly in the gut. Anti-CD8 antibody depletion demonstrated CD8+cellular control of viral replication. Two pig-tailed macaques progressed to disease with persisting viremia and possible compensatory mutations in the cytoplasmic tail. These studies demonstrate a marked perturbation in pathogenesis caused by ΔGY's ablation of the GYxxØ trafficking motif and reveal, paradoxically, that viral control is enhanced in a macaque species typically predisposed to more pathogenic manifestations of simian immunodeficiency virus (SIV) infection.IMPORTANCEThe pathogenesis of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) reflects a balance between viral replication, host innate and adaptive antiviral immune responses, and sustained immune activation that in humans and Asian macaques is associated with persistent viremia, immune escape, and AIDS. Among nonhuman primates, pig-tailed macaques following SIV infection are predisposed to more rapid disease progression than are rhesus macaques. Here, we show that disruption of a conserved tyrosine-based cellular trafficking motif in the viral transmembrane envelope glycoprotein cytoplasmic tail leads in pig-tailed macaques to a unique phenotype in which high levels of acute viral replication are followed by elite control, robust cellular responses in mucosal tissues, and no disease. Paradoxically, control of this virus in rhesus macaques is only partial, and progression to AIDS occurs. This novel model should provide a powerful tool to help identify host-specific determinants for viral control with potential relevance for vaccine development.


2006 ◽  
Vol 80 (2) ◽  
pp. 634-642 ◽  
Author(s):  
M. Paiardini ◽  
B. Cervasi ◽  
B. Sumpter ◽  
H. M. McClure ◽  
D. L. Sodora ◽  
...  

ABSTRACT In contrast to human immunodeficiency virus (HIV) infection of humans and experimental simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs), SIV infection of sooty mangabeys (SMs), a natural host African monkey species, is typically nonpathogenic and associated with preservation of CD4+ T-cell counts despite chronic high levels of viral replication. In previous studies, we have shown that the lack of SIV disease progression in SMs is related to lower levels of immune activation and bystander T-cell apoptosis compared to those of pathogenic HIV/SIV infection (G. Silvestri, D. Sodora, R. Koup, M. Paiardini, S. O’Neil, H. M. McClure, S. I. Staprans, and M. B. Feinberg, Immunity 18:441-452, 2003; G. Silvestri, A. Fedanov, S. Germon, N. Kozyr, W. J. Kaiser, D. A. Garber, H. M. McClure, M. B. Feinberg, and S. I. Staprans, J. Virol. 79:4043-4054, 2005). In HIV-infected patients, increased T-cell susceptibility to apoptosis is associated with a complex cell cycle dysregulation (CCD) that involves increased activation of the cyclin B/p34-cdc2 complex and abnormal nucleolar structure with dysregulation of nucleolin turnover. Here we report that CCD is also present during pathogenic SIV infection of RMs, and its extent correlates with the level of immune activation and T-cell apoptosis. In marked contrast, naturally SIV-infected SMs show normal regulation of cell cycle control (i.e., normal intracellular levels of cyclin B and preserved nucleolin turnover) and a low propensity to apoptosis in both peripheral blood- and lymph node-derived T cells. The absence of significant CCD in the AIDS-free, non-immune-activated SMs despite high levels of viral replication indicates that CCD is a marker of disease progression during lentiviral infection and supports the hypothesis that the preservation of cell cycle control may help to confer the disease-resistant phenotype of SIV-infected SMs.


Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 1174-1181 ◽  
Author(s):  
Xiaolei Wang ◽  
Terri Rasmussen ◽  
Bapi Pahar ◽  
Bhawna Poonia ◽  
Xavier Alvarez ◽  
...  

Abstract Rapid, profound, and selective depletion of memory CD4+ T cells has now been confirmed to occur in simian immunodeficiency virus (SIV)–infected adult macaques and human immunodeficiency virus (HIV)–infected humans. Within days of infection, marked depletion of memory CD4+ T cells occurs primarily in mucosal tissues, the major reservoir for memory CD4+ T cells in adults. However, HIV infection in neonates often results in higher viral loads and rapid disease progression, despite the paucity of memory CD4+ T cells in the peripheral blood. Here, we examined the immunophenotype of CD4+ T cells in normal and SIV-infected neonatal macaques to determine the distribution of naive and memory T-cell subsets in tissues. We demonstrate that, similar to adults, neonates have abundant memory CD4+ T cells in the intestinal tract and spleen and that these are selectively infected and depleted in primary SIV infection. Within 12 days of SIV infection, activated (CD69+), central memory (CD95+CD28+) CD4+ T cells are marked and persistently depleted in the intestine and other tissues of neonates compared with controls. The results in dicate that “activated” central memory CD4+ T cells are the major target for early SIV infection and CD4+ T cell depletion in neonatal macaques.


2007 ◽  
Vol 81 (9) ◽  
pp. 4445-4456 ◽  
Author(s):  
L. E. Pereira ◽  
F. Villinger ◽  
N. Onlamoon ◽  
P. Bryan ◽  
A. Cardona ◽  
...  

ABSTRACT Differences in clinical outcome of simian immunodeficiency virus (SIV) infection in disease-resistant African sooty mangabeys (SM) and disease-susceptible Asian rhesus macaques (RM) prompted us to examine the role of regulatory T cells (Tregs) in these two animal models. Results from a cross-sectional study revealed maintenance of the frequency and absolute number of peripheral Tregs in chronically SIV-infected SM while a significant loss occurred in chronically SIV-infected RM compared to uninfected animals. A longitudinal study of experimentally SIV-infected animals revealed a transient increase in the frequency of Tregs from baseline values following acute infection in RM, but no change in the frequency of Tregs occurred in SM during this period. Further examination revealed a strong correlation between plasma viral load (VL) and the level of Tregs in SIV-infected RM but not SM. A correlation was also noted in SIV-infected RM that control VL spontaneously or in response to antiretroviral chemotherapy. In addition, immunofluorescent cell count assays showed that while Treg-depleted peripheral blood mononuclear cells from RM led to a significant enhancement of CD4+ and CD8+ T-cell responses to select pools of SIV peptides, there was no detectable T-cell response to the same pool of SIV peptides in Treg-depleted cells from SIV-infected SM. Our data collectively suggest that while Tregs do appear to play a role in the control of viremia and the magnitude of the SIV-specific immune response in RM, their role in disease resistance in SM remains unclear.


Sign in / Sign up

Export Citation Format

Share Document