scholarly journals Natural Killer Cell Function Is Well Preserved in Asymptomatic Human Immunodeficiency Virus Type 2 (HIV-2) Infection but Similar to That of HIV-1 Infection When CD4 T-Cell Counts Fall

2006 ◽  
Vol 80 (5) ◽  
pp. 2529-2538 ◽  
Author(s):  
Samuel Victor Nuvor ◽  
Marianne van der Sande ◽  
Sarah Rowland-Jones ◽  
Hilton Whittle ◽  
Assan Jaye

ABSTRACT Natural killer (NK) cells are potent effectors of natural immunity and their activity prevents human immunodeficiency virus type 1 (HIV-1) viral entry and viral replication. We sought to determine whether NK immune responses are associated with different clinical course of HIV-1 and HIV-2 infections. A cross-sectional analysis of NK cell responses was undertaken in 30 HIV-1 and 30 HIV-2 subjects in each of three categories of CD4+-T-cell counts (>500, 200 to 500, and <200 cells/μl) and in 50 HIV-uninfected control subjects. Lytic activity and gamma interferon (IFN-γ) secretion were measured by chromium release and enzyme-linked immunospot assays, respectively. Flow cytometry was used to assess intracellular cytokines and chemokines. Levels of NK cytotoxicity were significantly higher in HIV-2 than in HIV-1 infections in subjects with high CD4+-T-cell counts and were similar to that of the healthy controls. In these HIV-2 subjects, cytolytic activity was positively correlated to NK cell count and inversely related to plasma viremia. Levels of intracellular MIP-1β, RANTES, tumor necrosis factor alpha, and IFN-γ produced by NK CD56bright cells were significantly higher in HIV-2- than HIV-1-infected subjects with high CD4+-T-cell counts but fell to similar levels as CD4 counts dropped. The data suggest efficient cytolytic and chemokine-suppressive activity of NK cells early in HIV-2 infection, which is associated with high CD4+ T-cell counts. Enhancement of these functions may be important in immune-based therapy to control HIV disease.

2006 ◽  
Vol 87 (5) ◽  
pp. 1285-1294 ◽  
Author(s):  
Guerau Fernàndez ◽  
Anuska Llano ◽  
Miriam Esgleas ◽  
Bonaventura Clotet ◽  
José A. Esté ◽  
...  

Human immunodeficiency virus type 1 (HIV-1) infection is established by virus variants that use the CCR5 co-receptor for entry (CCR5-tropic or R5 variants), whereas viruses that use CXCR4 as co-receptor (CXCR4-tropic or X4 variants) emerge during disease progression in approximately 50 % of infected subjects. X4 variants may have a higher fitness ex vivo and their detection is usually accompanied by faster T-cell depletion and the onset of AIDS in HIV-1-positive individuals. Here, the relationship between the sequence variation of the HIV-1 env V3–V5 region and positive selective pressure on R5 and X4 variants from infected subjects with CD4 T cell counts below 200 cells μl−1 was studied. A correlation was found between genetic distance and CD4+ cell count at late stages of the disease. R5 variants that co-existed with X4 variants were significantly less heterogeneous than R5 variants from subjects without X4 variants (P<0·0001). Similarly, X4 variants had a significantly higher diversity than R5 variants (P<0·0001), although residues under positive selection had a similar distribution pattern in both variants. Therefore, both X4 and R5 variants were subjected to high selective pressures from the host. Furthermore, the interaction between X4 and R5 variants within the same subject resulted in a purifying selection on R5 variants, which only survived as a homogeneous virus population. These results indicate that R5 variants from X4 phenotype samples were highly homogeneous and under weakly positive selective pressures. In contrast, R5 variants from R5 phenotype samples were highly heterogeneous and subject to positive selective pressures.


2006 ◽  
Vol 13 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Geoffrey J. Gorse ◽  
Ramona E. Simionescu ◽  
Gira B. Patel

ABSTRACT Effects of human immunodeficiency virus type 1 (HIV-1) recombinant envelope glycoprotein vaccines on cell-mediated immune (CMI) responses were assessed in HIV-1-infected patients. Asymptomatic, antiretroviral-treatment-naïve, HIV-1-infected patients with CD4+ T-cell counts greater than 400/μl received multiple intramuscular injections of HIV-1 IIIB recombinant envelope glycoprotein (rgp160) vaccine or HIV-1 MN recombinant envelope glycoprotein (rgp120) vaccine (eight patients, referred to as the HIV-1 vaccinees) or placebo or hepatitis B vaccine (three patients, referred to as the controls). Lymphocyte proliferation in response to HIV-1 envelope glycoproteins, both homologous and heterologous to the HIV-1 immunogens, was absent prior to study treatment in all patients but increased significantly during the vaccination series and after the final vaccination in HIV-1 vaccinees (P < 0.05) and remained absent in control patients. In flow cytometric analyses of intracellular cytokines, T-cell receptor stimulation with an anti-CD3 antibody induced gamma interferon (IFN-γ) expression by activated CD4+ and CD8+ lymphocytes at greater frequencies than did stimulation with recombinant envelope glycoprotein and p24 of HIV-1 (P< 0.05). Mean frequencies of HIV-1 envelope glycoprotein-stimulated, activated intracellularIFN-γ-producing CD4+ and CD8+ lymphocytes and of interleukin-2-producing CD4+ lymphocytes did not increase after vaccination, but cytokine-producing cells were detectable in some patients. Comparing pre- to post-HIV-1 vaccination time points, changes in frequencies of activated, IFN-γ-producing CD4+ cells correlated inversely with changes in lymphocyte proliferation in response to recombinant envelope glycoprotein in HIV-1 vaccinees (P < 0.05). Increased CMI responses to HIV-1 envelope glycoprotein measured by lymphocyte proliferation were associated with HIV-1 recombinant envelope glycoprotein vaccines.


2008 ◽  
Vol 82 (14) ◽  
pp. 7189-7200 ◽  
Author(s):  
Biswanath Majumder ◽  
Narasimhan J. Venkatachari ◽  
Shaylee O'Leary ◽  
Velpandi Ayyavoo

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection has been implicated in impairing various aspects of NK cell function in viremic condition, and several viral factors contribute to these defects. Here, we evaluated the effect of HIV-1 Vpr on NK cell cytolytic function and cytokine (gamma interferon [IFN-γ]) production in the context of infection and exposure. Our data indicate that NK cells derived from a peripheral blood mononuclear cell culture infected in vitro with HIV-1 vpr(+) virus or exposed to recombinant Vpr protein exhibited reduced target cell killing in conjunction with diminished expression of CD107a and reduced IFN-γ production compared to their Vpr-negative counterparts. This Vpr-induced NK cell defect is in part through differential regulation of interleukin-12 and transforming growth factor β production by the infected target cells and concomitant activation of Smad3 signaling pathway. Collectively, these results illustrate the ability of Vpr to impair NK cell-mediated innate immune functions indirectly by dysregulating multiple cytokines in the infected target cells, thus increasing disease severity and affecting the final outcome in HIV-1 infection.


2004 ◽  
Vol 78 (22) ◽  
pp. 12638-12646 ◽  
Author(s):  
Eli Boritz ◽  
Brent E. Palmer ◽  
Cara C. Wilson

ABSTRACT Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-γ)-producing CD4+ T cells. Among the 20 viremic, treatment-naïve subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-γ-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.


2008 ◽  
Vol 82 (17) ◽  
pp. 8619-8628 ◽  
Author(s):  
Wim Jennes ◽  
Makhtar Camara ◽  
Tandakha Dièye ◽  
Souleymane Mboup ◽  
Luc Kestens

ABSTRACT Human immunodeficiency virus type 2 (HIV-2) infection results in slower CD4+ T-cell decline, lower plasma viral load levels, and hence slower progression of the disease than does HIV-1 infection. Although the reasons for this are not clear, it is possible that HIV-2 replication is more effectively controlled by host responses. We used aligned pools of overlapping HIV-1 and HIV-2 Gag peptides in an enhanced gamma interferon enzyme-linked immunospot assay to compare the levels of homologous and cross-reactive Gag-specific T-cell responses between HIV-1- and HIV-2-infected patients. HIV-2-infected patients showed broader and stronger homologous Gag-specific T-cell responses than HIV-1-infected patients. In contrast, the cross-reactive T-cell responses in HIV-2-infected patients were both narrower and weaker than those in HIV-1-infected patients, in line with overall weaker correlations between homologous and heterologous T-cell responses among HIV-2-infected patients than among HIV-1-infected patients. Cross-reactive responses in HIV-2-infected patients tended to correlate directly with HIV-1/HIV-2 Gag sequence similarities; this was not found in HIV-1-infected patients. The CD4+ T-cell counts of HIV-2-infected patients correlated directly with homologous responses and inversely with cross-reactive responses; this was not found in HIV-1-infected patients. Our data support a model whereby high-level HIV-2-specific T-cell responses control the replication of HIV-2, thus limiting viral diversification and priming of HIV-1 cross-reactive T-cell responses over time. However, we cannot exclude the possibility that HIV-2 replication is controlled by other host factors and that HIV-2-specific T-cell responses are better maintained in the context of slow viral divergence and a less damaged immune system. Understanding the nature of immune control of HIV-2 infection could be crucial for HIV vaccine design.


2005 ◽  
Vol 79 (23) ◽  
pp. 14822-14833 ◽  
Author(s):  
Natasha Larke ◽  
Aileen Murphy ◽  
Christoph Wirblich ◽  
Denise Teoh ◽  
Marie J. Estcourt ◽  
...  

ABSTRACT In the absence of strategies for reliable induction of antibodies broadly neutralizing human immunodeficiency virus type 1 (HIV-1), vaccine efforts have shifted toward the induction of cell-mediated immunity. Here we describe the construction and immunogenicity of novel T-cell vaccine NS1.HIVA, which delivers the HIV-1 clade A consensus-derived immunogen HIVA on the surface of tubular structures spontaneously formed by protein NS1 of bluetongue virus. We demonstrated that NS1 tubules can accommodate a protein as large as 527 amino acids without losing their self-assembly capability. When injected into BALB/c mice by several routes, chimeric NS1.HIVA tubules induced HIV-1-specific major histocompatibility complex class I-restricted T cells. These could be boosted by modified virus Ankara expressing the same immunogen and generate a memory capable of gamma interferon (IFN-γ) production, proliferation, and lysis of sensitized target cells. Induced memory T cells readily produced IFN-γ 230 days postimmunization, and upon a surrogate virus challenge, NS1.HIVA vaccine alone decreased the vaccinia virus vv.HIVA load in ovaries by 2 orders of magnitude 280 days after immunization. Thus, because of its T-cell immunogenicity and antigenic simplicity, the NS1 delivery system could serve as a priming agent for heterologous prime-boost vaccination regimens. Its usefulness in primates, including humans, remains to be determined.


2003 ◽  
Vol 77 (4) ◽  
pp. 2663-2674 ◽  
Author(s):  
Uma Malhotra ◽  
Sarah Holte ◽  
Tuofu Zhu ◽  
Elizabeth Delpit ◽  
Claire Huntsberry ◽  
...  

ABSTRACT Mounting evidence points to a role for CD4+ T-helper (Th) cell activities in controlling human immunodeficiency virus type 1 (HIV-1) infection. To determine the induction and evolution of Th responses following acute infection, we prospectively analyzed Env- and Gag-specific Th responses longitudinally for 92 patients with acute (n = 28) or early (n = 64) HIV-1 infection (median, 55 days postinfection [DPI]). The probability of detecting HIV-1-specific lymphoproliferative responses was remarkably low, and when present, the responses were more likely to be Gag specific than Env specific (16 versus 5%). Env-specific responses were significantly more common in patients presenting at <30 DPI than in those presenting at 30 to 365 DPI (21 versus 0.5%, P = 0.001). By contrast, Gag-specific responses occurred with similar frequencies among subjects presenting at <30 DPI and 30 to 365 DPI (13 versus 17%, P = 0.6). After treatment, and regardless of the duration of infection before therapy, Gag-specific Th responses predominated. Furthermore, some acutely infected subjects lost detectable Env-specific Th proliferative responses, which failed to reemerge upon treatment. Detailed analysis for one such subject revealed Env-specific lymphoproliferation at 11 DPI but no detectable Env-specific lymphoproliferation or ex vivo gamma interferon (IFN-γ) secretion at multiple subsequent time points. Env-specific CD4+ T-cell clones from 11 DPI recognized six epitopes in both conserved and variable regions within gp120 and gp41, exhibited major histocompatibility complex-restricted cytotoxicity, and secreted high levels of antiviral cytokines. T-cell receptor clonal transcript analyses and autologous virus sequencing revealed that Th cells induced during acute infection were maintained and there were no Th escape mutations. Subsequent analysis for this subject and six of seven others revealed detectable IFN-γ-secreting cells, but only following in vitro gp160 stimulation. In summary, we conclude that Env-specific Th responses are elicited very early in acute infection and may precede Gag-specific responses. The inability to detect Env-specific Th responses over time and despite antiretroviral therapy may reflect low frequencies and impaired proliferative capacity, and viral escape is not necessary for this to occur.


2005 ◽  
Vol 79 (4) ◽  
pp. 2042-2049 ◽  
Author(s):  
Donald N. Forthal ◽  
Gary Landucci ◽  
Tran B. Phan ◽  
Juan Becerra

ABSTRACT Antibodies can prevent lentivirus infections in animals and may play a role in controlling viral burden in established infection. In preventing and particularly in controlling infection, antibodies likely function in the presence of large quantities of virus. In this study, we explored the mechanisms by which antibodies neutralize large inocula of human immunodeficiency virus type 1 (HIV-1) on different target cells. Immunoglobulin G (IgG) from HIV-infected patients was tested for neutralizing activity against primary R5 strains of HIV-1 at inocula ranging from 100 to 20,000 50% tissue culture infective doses. At all virus inocula, inhibition by antibody was enhanced when target cells for virus growth were monocyte-depleted, peripheral blood mononuclear cells (PBMCs) rather than CD4+ lymphocytes. However, enhanced inhibition on PBMCs was greatest with larger amounts of virus. Depleting PBMCs of natural killer (NK) cells, which express Fc receptors for IgG (FcγRs), abrogated the enhanced antibody inhibition, whereas adding NK cells to CD4+ lymphocytes restored inhibition. There was no enhanced inhibition on PBMCs when F(ab′)2 was used. Further experiments demonstrated that the release of β-chemokines, most likely through FcγR triggering of NK cells, contributed modestly to the antiviral activity of antibody on PBMCs and that antibody-coated virus adsorbed to uninfected cells provided a target for NK cell-mediated inhibition of HIV-1. These results indicate that Fc-FcγR interactions enhance the ability of antibody to neutralize HIV-1. Since FcγR-bearing cells are always present in vivo, FcγR-mediated antibody function may play a role in the ability of antibody to control lentivirus infection.


2007 ◽  
Vol 81 (22) ◽  
pp. 12685-12688 ◽  
Author(s):  
David Gautier ◽  
Stéphanie Beq ◽  
Catarina S. Cortesão ◽  
Ana E. Sousa ◽  
Rémi Cheynier

ABSTRACT Human immunodeficiency virus type 2 (HIV-2) infection leads to a lifelong asymptomatic period in the majority of patients. Even in patients with progressive disease, a slow CD4 count decline characterizes the chronic phase of HIV-2 infection, suggesting that peripheral T-cell homeostasis is controlled better following HIV-2 infection than following HIV-1 infection. Herein we showed that, in contrast to HIV-1-infected patients, HIV-2-infected patients demonstrate enhanced thymic function compared to age-matched healthy individuals. The correlation between higher thymic production and lower CD4 T-cell loss in these patients suggests that efficient thymopoiesis is implicated in the long-lasting maintenance of CD4 T-cell counts in HIV-2 disease.


2002 ◽  
Vol 9 (3) ◽  
pp. 558-561 ◽  
Author(s):  
Nikolaos V. Sipsas ◽  
Petros P. Sfikakis ◽  
Athanasios Kontos ◽  
Theodore Kordossis

ABSTRACT CD40 ligand (CD40L or CD154) is a costimulatory molecule expressed mainly on activated CD4+ T cells. Concentrations of the soluble form of CD40L (sCD40L) in serum were determined for a cohort of 77 human immunodeficiency virus type 1 (HIV-1)-infected patients before and after initiation of highly active antiretroviral treatment (HAART) by a quantitative enzyme-linked immunosorbent assay. Circulating sCD40L levels were higher by twofold in untreated patients than in healthy controls (means ± standard deviations [SD]: 1.41 ± 1.48 versus 0.69 ± 0.59 ng/ml; P < 0.001). HIV-1-infected patients classified as CD4 T-cell category 1 had significantly higher sCD40L levels than patients classified as CD4 categories 2 and 3 (mean ± SD: 2.08 ± 1.46 ng/ml versus 1.57 ± 1.58 [category 2] and 0.94 ± 1.25 ng/ml [category 3]; P = 0.046), while no correlation with clinical categories A, B, and C was found. Individual serum sCD40L levels correlated with CD4+ T-cell counts (P = 0.039) but not with viral load, gamma globulin levels, or acute-inflammatory-response markers. After 8 to 12 months of HAART, a further threefold increase of serum sCD40L levels, which paralleled the increase of CD4+ T-cell counts, was observed. These novel findings suggest that sCD40L measurement in HIV-1-infected patients could serve as a new surrogate marker useful in the assessment of treatment efficacy, especially in settings where well-equipped laboratories and funding required for CD4+ T-cell count and viral load measurements are not available.


Sign in / Sign up

Export Citation Format

Share Document