scholarly journals Identification of a Gamma Interferon-Activated Inhibitor of Translation-Like RNA Motif at the 3′ End of the Transmissible Gastroenteritis Coronavirus Genome Modulating Innate Immune Response

mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Silvia Marquez-Jurado ◽  
Aitor Nogales ◽  
Sonia Zuñiga ◽  
Luis Enjuanes ◽  
Fernando Almazán

ABSTRACTA 32-nucleotide (nt) RNA motif located at the 3′ end of the transmissible gastroenteritis coronavirus (TGEV) genome was found to specifically interact with the host proteins glutamyl-prolyl-tRNA synthetase (EPRS) and arginyl-tRNA synthetase (RRS). This RNA motif has high homology in sequence and secondary structure with the gamma interferon-activated inhibitor of translation (GAIT) element, which is located at the 3′ end of several mRNAs encoding proinflammatory proteins. The GAIT element is involved in the translation silencing of these mRNAs through its interaction with the GAIT complex (EPRS, heterogeneous nuclear ribonucleoprotein Q, ribosomal protein L13a, and glyceraldehyde 3-phosphate dehydrogenase) to favor the resolution of inflammation. Interestingly, we showed that the viral RNA motif bound the GAIT complex and inhibited thein vitrotranslation of a chimeric mRNA containing this RNA motif. To our knowledge, this is the first GAIT-like motif described in a positive RNA virus. To test the functional role of the GAIT-like RNA motif during TGEV infection, a recombinant coronavirus harboring mutations in this motif was engineered and characterized. Mutations of the GAIT-like RNA motif did not affect virus growth in cell cultures. However, an exacerbated innate immune response, mediated by the melanoma differentiation-associated gene 5 (MDA5) pathway, was observed in cells infected with the mutant virus compared with the response observed in cells infected with the parental virus. Furthermore, the mutant virus was more sensitive to beta interferon than the parental virus. All together, these data strongly suggested that the viral GAIT-like RNA motif modulates the host innate immune response.IMPORTANCEThe innate immune response is the first line of antiviral defense that culminates with the synthesis of interferon and proinflammatory cytokines to limit virus replication. Coronaviruses encode several proteins that interfere with the innate immune response at different levels, but to date, no viral RNA counteracting antiviral response has been described. In this work, we have characterized a 32-nt RNA motif located at the 3′ end of the TGEV genome that specifically interacted with EPRS and RRS. This RNA motif presented high homology with the GAIT element, involved in the modulation of the inflammatory response. Moreover, the disruption of the viral GAIT-like RNA motif led to an exacerbated innate immune response triggered by MDA5, indicating that the GAIT-like RNA motif counteracts the host innate immune response. These novel findings may be of relevance for other coronaviruses and could serve as the basis for the development of novel antiviral strategies.

2016 ◽  
Vol 90 (11) ◽  
pp. 5399-5414 ◽  
Author(s):  
Martina Becares ◽  
Alejandro Pascual-Iglesias ◽  
Aitor Nogales ◽  
Isabel Sola ◽  
Luis Enjuanes ◽  
...  

ABSTRACTCoronavirus (CoV) nonstructural protein 14 (nsp14) is a 60-kDa protein encoded by the replicase gene that is part of the replication-transcription complex. It is a bifunctional enzyme bearing 3′-to-5′ exoribonuclease (ExoN) and guanine-N7-methyltransferase (N7-MTase) activities. ExoN hydrolyzes single-stranded RNAs and double-stranded RNAs (dsRNAs) and is part of a proofreading system responsible for the high fidelity of CoV replication. nsp14 N7-MTase activity is required for viral mRNA cap synthesis and prevents the recognition of viral mRNAs as “non-self” by the host cell. In this work, a set of point mutants affecting different motifs within the ExoN domain of nsp14 was generated, using transmissible gastroenteritis virus as a model ofAlphacoronavirus. Mutants lacking ExoN activity were nonviable despite being competent in both viral RNA and protein synthesis. A specific mutation within zinc finger 1 (ZF-C) led to production of a viable virus with growth and viral RNA synthesis kinetics similar to that of the parental virus. Mutant recombinant transmissible gastroenteritis virus (TGEV) ZF-C (rTGEV-ZF-C) caused decreased cytopathic effect and apoptosis compared with the wild-type virus and reduced levels of dsRNA accumulation at late times postinfection. Consequently, the mutant triggered a reduced antiviral response, which was confirmed by evaluating different stages of the dsRNA-induced antiviral pathway. The expression of beta interferon (IFN-β), tumor necrosis factor (TNF), and interferon-stimulated genes in cells infected with mutant rTGEV-ZF-C was reduced compared to the levels seen with the parental virus. Overall, our data revealed a potential role for CoV nsp14 in modulation of the innate immune response.IMPORTANCEThe innate immune response is the first line of antiviral defense that culminates in the synthesis of interferon and proinflammatory cytokines to control viral replication. CoVs have evolved several mechanisms to counteract the innate immune response at different levels, but the role of CoV-encoded ribonucleases in preventing activation of the dsRNA-induced antiviral response has not been described to date. The introduction of a mutation in zinc finger 1 of the ExoN domain of nsp14 led to production of a virus that induced a weak antiviral response, most likely due to the accumulation of lower levels of dsRNA in the late phases of infection. These observations allowed us to propose a novel role for CoV nsp14 ExoN activity in counteracting the antiviral response, which could serve as a novel target for the design of antiviral strategies.


2012 ◽  
Vol 4 ◽  
pp. 405-409 ◽  
Author(s):  
Adrianna Pawlik ◽  
Grażyna Sender ◽  
Rafał Starzyński ◽  
Agnieszka Korwin-Kossakowska

2020 ◽  
Vol 16 (5) ◽  
pp. e1008586 ◽  
Author(s):  
Debanjan Mukhopadhyay ◽  
David Arranz-Solís ◽  
Jeroen P. J. Saeij

2012 ◽  
Vol 80 (11) ◽  
pp. 3892-3899 ◽  
Author(s):  
Azad Eshghi ◽  
Kristel Lourdault ◽  
Gerald L. Murray ◽  
Thanatchaporn Bartpho ◽  
Rasana W. Sermswan ◽  
...  

ABSTRACTPathogenicLeptospiraspp. are likely to encounter higher concentrations of reactive oxygen species induced by the host innate immune response. In this study, we characterizedLeptospira interroganscatalase (KatE), the only annotated catalase found within pathogenicLeptospiraspecies, by assessing its role in resistance to H2O2-induced oxidative stress and during infection in hamsters. PathogenicL. interrogansbacteria had a 50-fold-higher survival rate under H2O2-induced oxidative stress than did saprophyticL. biflexabacteria, and this was predominantly catalase dependent. We also characterized KatE, the only annotated catalase found within pathogenicLeptospiraspecies. Catalase assays performed with recombinant KatE confirmed specific catalase activity, while protein fractionation experiments localized KatE to the bacterial periplasmic space. The insertional inactivation ofkatEin pathogenicLeptospirabacteria drastically diminished leptospiral viability in the presence of extracellular H2O2and reduced virulence in an acute-infection model. Combined, these results suggest thatL. interrogansKatE confersin vivoresistance to reactive oxygen species induced by the host innate immune response.


Sign in / Sign up

Export Citation Format

Share Document