scholarly journals Maternal Antiviral Immunoglobulin Accumulates in Neural Tissue of Neonates To Prevent HSV Neurological Disease

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Yike Jiang ◽  
Chaya D. Patel ◽  
Richard Manivanh ◽  
Brian North ◽  
Iara M. Backes ◽  
...  

ABSTRACT While antibody responses to neurovirulent pathogens are critical for clearance, the extent to which antibodies access the nervous system to ameliorate infection is poorly understood. In this study on herpes simplex virus 1 (HSV-1), we demonstrate that HSV-specific antibodies are present during HSV-1 latency in the nervous systems of both mice and humans. We show that antibody-secreting cells entered the trigeminal ganglion (TG), a key site of HSV infection, and persisted long after the establishment of latent infection. We also demonstrate the ability of passively administered IgG to enter the TG independently of infection, showing that the naive TG is accessible to antibodies. The translational implication of this finding is that human fetal neural tissue could contain HSV-specific maternally derived antibodies. Exploring this possibility, we observed HSV-specific IgG in HSV DNA-negative human fetal TG, suggesting passive transfer of maternal immunity into the prenatal nervous system. To further investigate the role of maternal antibodies in the neonatal nervous system, we established a murine model to demonstrate that maternal IgG can access and persist in neonatal TG. This maternal antibody not only prevented disseminated infection but also completely protected the neonate from neurological disease and death following HSV challenge. Maternal antibodies therefore have a potent protective role in the neonatal nervous system against HSV infection. These findings strongly support the concept that prevention of prenatal and neonatal neurotropic infections can be achieved through maternal immunization. IMPORTANCE Herpes simplex virus 1 is a common infection of the nervous system that causes devastating neonatal disease. Using mouse and human tissue, we discovered that antiviral antibodies accumulate in neural tissue after HSV-1 infection in adults. Similarly, these antibodies pass to the offspring during pregnancy. We found that antiviral maternal antibodies can readily access neural tissue of the fetus and neonate. These maternal antibodies then protect neonatal mice against HSV-1 neurological infection and death. These results underscore the previously unappreciated role of maternal antibodies in protecting fetal and newborn nervous systems against infection. These data suggest that maternal immunization would be efficacious at preventing fetal/neonatal neurological infections. IMPORTANCE Herpes simplex virus 1 is a common infection of the nervous system that causes devastating neonatal disease. Using mouse and human tissue, we discovered that antiviral antibodies accumulate in neural tissue after HSV-1 infection in adults. Similarly, these antibodies pass to the offspring during pregnancy. We found that antiviral maternal antibodies can readily access neural tissue of the fetus and neonate. These maternal antibodies then protect neonatal mice against HSV-1 neurological infection and death. These results underscore the previously unappreciated role of maternal antibodies in protecting fetal and newborn nervous systems against infection. These data suggest that maternal immunization would be efficacious at preventing fetal/neonatal neurological infections.

2016 ◽  
Vol 90 (19) ◽  
pp. 8621-8633 ◽  
Author(s):  
Elizabeth Sloan ◽  
Anne Orr ◽  
Roger D. Everett

ABSTRACTWe previously reported that MORC3, a protein associated with promyelocytic leukemia nuclear bodies (PML NBs), is a target of herpes simplex virus 1 (HSV-1) ICP0-mediated degradation (E. Sloan, et al., PLoS Pathog11:e1005059, 2015,http://dx.doi.org/10.1371/journal.ppat.1005059). Since it is well known that certain other components of the PML NB complex play an important role during an intrinsic immune response to HSV-1 and are also degraded or inactivated by ICP0, here we further investigate the role of MORC3 during HSV-1 infection. We demonstrate that MORC3 has antiviral activity during HSV-1 infection and that this antiviral role is counteracted by ICP0. In addition, MORC3's antiviral role extends to wild-type (wt) human cytomegalovirus (HCMV) infection, as its plaque-forming efficiency increased in MORC3-depleted cells. We found that MORC3 is recruited to sites associated with HSV-1 genomes after their entry into the nucleus of an infected cell, and in wt infections this is followed by its association with ICP0 foci prior to its degradation. The RING finger domain of ICP0 was required for degradation of MORC3, and we confirmed that no other HSV-1 protein is required for the loss of MORC3. We also found that MORC3 is required for fully efficient recruitment of PML, Sp100, hDaxx, and γH2AX to sites associated with HSV-1 genomes entering the host cell nucleus. This study further unravels the intricate ways in which HSV-1 has evolved to counteract the host immune response and reveals a novel function for MORC3 during the host intrinsic immune response.IMPORTANCEHerpesviruses have devised ways to manipulate the host intrinsic immune response to promote their own survival and persistence within the human population. One way in which this is achieved is through degradation or functional inactivation of PML NB proteins, which are recruited to viral genomes in order to repress viral transcription. Because MORC3 associates with PML NBs in uninfected cells and is a target for HSV-1-mediated degradation, we investigated the role of MORC3 during HSV-1 infection. We found that MORC3 is also recruited to viral HSV-1 genomes, and importantly it contributes to the fully efficient recruitment of PML, hDaxx, Sp100, and γH2AX to these sites. Depletion of MORC3 resulted in an increase in ICP0-null HSV-1 and wt HCMV replication and plaque formation; therefore, this study reveals that MORC3 is an antiviral factor which plays an important role during HSV-1 and HCMV infection.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Elena Criscuolo ◽  
Matteo Castelli ◽  
Roberta A. Diotti ◽  
Virginia Amato ◽  
Roberto Burioni ◽  
...  

ABSTRACTHerpes simplex virus 1 (HSV-1) and HSV-2 can evade serum antibody-mediated neutralization through cell-to-cell transmission mechanisms, which represent one of the central steps in disease reactivation. To address the role of humoral immunity in controlling HSV-1 and HSV-2 replication, we analyzed serum samples from 44 HSV-1 and HSV-2 seropositive subjects by evaluating (i) their efficiency in binding both the purified viral particles and recombinant gD and gB viral glycoproteins, (ii) their neutralizing activity, and (iii) their capacity to inhibit the cell-to-cell virus passagein vitro. All of the sera were capable of binding gD, gB, and whole virions, and all sera significantly neutralized cell-free virus. However, neither whole sera nor purified serum IgG fraction was able to inhibit significantly cell-to-cell virus spreading inin vitropost-virus-entry infectious assays. Conversely, when spiked with an already described anti-gD human monoclonal neutralizing antibody capable of inhibiting HSV-1 and -2 cell-to-cell transmission, each serum boosted both its neutralizing and post-virus-entry inhibitory activity, with no interference exerted by serum antibody subpopulations.IMPORTANCEDespite its importance in the physiopathology of HSV-1 and -2 infections, the cell-to-cell spreading mechanism is still poorly understood. The data shown here suggest that infection-elicited neutralizing antibodies capable of inhibiting cell-to-cell virus spread can be underrepresented in most infected subjects. These observations can be of great help in better understanding the role of humoral immunity in controlling virus reactivation and in the perspective of developing novel therapeutic strategies, studying novel correlates of protection, and designing effective vaccines.


2011 ◽  
Vol 18 (8) ◽  
pp. 1336-1342 ◽  
Author(s):  
Anna Grahn ◽  
Marie Studahl ◽  
Staffan Nilsson ◽  
Elisabeth Thomsson ◽  
Malin Bäckström ◽  
...  

ABSTRACTHerpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) cause serious central nervous system (CNS) diseases that are diagnosed with PCR using samples of cerebrospinal fluid (CSF) and, during later stages of such infections, with assays of intrathecal IgG antibody production. However, serological diagnoses have been hampered by cross-reactions between HSV-1 and VZV IgG antibodies and are commonly reported in patients with herpes simplex encephalitis (HSE). In this study we have evaluated VZV glycoprotein E (gE) as a new antigen for serological diagnosis of VZV-induced CNS infections. Paired samples of CSF and serum from 29 patients with clinical diagnosis of VZV CNS infection (n= 15) or HSE (n= 14), all confirmed by PCR, were analyzed. VZV gE and whole VZV were compared as antigens in enzyme-linked immunosorbent assays (ELISAs) for serological assays in which the CSF/serum sample pairs were diluted to identical IgG concentrations. With the gE antigen, none of the HSE patients showed intrathecal IgG antibodies against VZV, compared to those shown by 11/14 patients using whole-VZV antigen (P< 0.001). In the patients with VZV infections, significantly higher CSF/serum optical density (OD) ratios were found in the VZV patients using the VZV gE antigen compared to those found using the whole-VZV antigen (P= 0.001). These results show that gE is a sensitive antigen for serological diagnosis of VZV infections in the CNS and that this antigen was devoid of cross-reactivity to HSV-1 IgG in patients with HSE. We therefore propose that VZV gE can be used for serological discrimination of CNS infections caused by VZV and HSV-1.


2015 ◽  
Vol 89 (21) ◽  
pp. 11080-11091 ◽  
Author(s):  
Zachary M. Parker ◽  
Aisling A. Murphy ◽  
David A. Leib

ABSTRACTSTING is a protein in the cytosolic DNA and cyclic dinucleotide sensor pathway that is critical for the initiation of innate responses to infection by various pathogens. Consistent with this, herpes simplex virus 1 (HSV-1) causes invariable and rapid lethality in STING-deficient (STING−/−) mice following intravenous (i.v.) infection. In this study, using real-time bioluminescence imaging and virological assays, as expected, we demonstrated that STING−/−mice support greater replication and spread in ocular tissues and the nervous system. In contrast, they did not succumb to challenge via the corneal route even with high titers of a virus that was routinely lethal to STING−/−mice by the i.v. route. Corneally infected STING−/−mice also showed increased periocular disease and increased corneal and trigeminal ganglia titers, although there was no difference in brain titers. They also showed elevated expression of tumor necrosis factor alpha (TNF-α) and CXCL9 relative to control mice but surprisingly modest changes in type I interferon expression. Finally, we also showed that HSV strains lacking the ability to counter autophagy and the PKR-driven antiviral state had near-wild-type virulence following intracerebral infection of STING−/−mice. Together, these data show that while STING is an important component of host resistance to HSV in the cornea, its previously shown immutable role in mediating host survival by the i.v. route was not recapitulated following a mucosal infection route. Furthermore, our data are consistent with the idea that HSV counters STING-mediated induction of the antiviral state and autophagy response, both of which are critical factors for survival following direct infection of the nervous system.IMPORTANCEHSV infections represent an incurable source of morbidity and mortality in humans and are especially severe in neonatal and immunocompromised populations. A key step in the development of an immune response is the recognition of microbial components within infected cells. The host protein STING is important in this regard for the recognition of HSV DNA and the subsequent triggering of innate responses. STING was previously shown to be essential for protection against lethal challenge from intravenous HSV-1 infection. In this study, we show that the requirement for STING depends on the infection route. In addition, STING is important for appropriate regulation of the inflammatory response in the cornea, and our data are consistent with the idea that HSV modulates STING activity through inhibition of autophagy. Our results elucidate the importance of STING in host protection from HSV-1 and demonstrate the redundancy of host protective mechanisms, especially following mucosal infection.


2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Kaiting Yang ◽  
Yong Liang ◽  
Zhichen Sun ◽  
Diyuan Xue ◽  
Hairong Xu ◽  
...  

ABSTRACTB cell-derived lymphotoxin (LT) is required for the development of follicular dendritic cell clusters for the formation of primary and secondary lymphoid follicles, but the role of T cell-derived LT in antibody response has not been well demonstrated. We observed that lymphotoxin β-receptor (LTβR) signaling is essential for optimal humoral immune response and protection against an acute herpes simplex virus 1 (HSV-1) infection. Blocking the LTβR pathway caused poor maintenance of germinal center B (GC-B) cells and follicular helper T (Tfh) cells. Using bone marrow chimeric mice and adoptive transplantation, we determined that T cell-derived LT played an indispensable role in the humoral immune response to HSV-1. Upregulation of gamma interferon by the LTβR-Ig blockade impairs the sustainability of Tfh-like cells, leading to an impaired humoral immune response. Our findings have identified a novel role of T cell-derived LT in the humoral immune response against HSV-1 infection.IMPORTANCEImmunocompromised people are susceptible to HSV-1 infection and lethal recurrence, which could be inhibited by anti-HSV-1 humoral immune response in the host. This study sought to explore the role of T cell-derived LT in the anti-HSV-1 humoral immune response using LT-LTβR signaling-deficient mice and the LTβR-Ig blockade. The data indicate that the T cell-derived LT may play an essential role in sustaining Tfh-like cells and ensure Tfh-like cells' migration into primary or secondary follicles for further maturation. This study provides insights for vaccine development against infectious diseases.


2021 ◽  
Author(s):  
Jun Arii ◽  
Kosuke Takeshima ◽  
Yuhei Maruzuru ◽  
Naoto Koyanagi ◽  
Yoshitaka Nakayama ◽  
...  

During the nuclear export of nascent nucleocapsids of herpesviruses, the nucleocapsids bud through the inner nuclear membrane (INM) by acquiring the INM as a primary envelope (primary envelopment). We recently reported that herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), which consists of UL34 and UL31, interacts with an ESCRT-III adaptor ALIX and recruits ESCRT-III machinery to the INM for efficient primary envelopment. In this study, we identified a cluster of six arginine residues in the disordered domain of UL34 as a minimal region required for the interaction with ALIX as well as the recruitment of ALIX and an ESCRT-III protein CHMP4B to the INM in HSV-1-infected cells. Mutations in the arginine cluster exhibited phenotypes similar to those with ESCRT-III inhibition reported previously, including the mis-localization of NEC, induction of membranous invagination structures containing enveloped virions, aberrant accumulation of enveloped virions in the invaginations and perinuclear space, and reduction of viral replication. We also showed that the effect of the arginine cluster in UL34 on HSV-1 replication was dependent primarily on ALIX. These results indicated that the arginine cluster in the disordered domain of UL34 was required for the interaction with ALIX and the recruitment of ESCRT-III machinery to the INM to promote primary envelopment. IMPORTANCE Herpesvirus UL34 homologs contain conserved amino-terminal domains that mediate vesicle formation through interactions with UL31 homologs during primary envelopment. UL34 homologs also comprise other domains adjacent to their membrane-anchoring regions, which differ in length, are variable in herpesviruses and do not form distinguished secondary structures. However, the role of these disordered domains in infected cells remains to be elucidated. In this study, we present data suggesting that the arginine cluster in the disordered domain of HSV-1 UL34 mediates the interaction with ALIX, thereby leading to the recruitment of ESCRT-III machinery to the INM for efficient primary envelopment. This is the first study to report the role of the disordered domain of a UL34 homolog in herpesvirus infections.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Michael Glas ◽  
Sigrun Smola ◽  
Thorsten Pfuhl ◽  
Juliane Pokorny ◽  
Rainer M. Bohle ◽  
...  

Herpes simplex virus type 1 (HSV-1) infections cause typical dermal and mucosal lesions in children and adults. Also complications to the peripheral and central nervous system, pneumonia or hepatitis are well known. However, dissemination to viscera in adults is rare and predominantly observed in immunocompromised patients. Here we describe the case of a 70-year-old male admitted with macrohematuria and signs of acute infection and finally deceasing in a septic shock with multi organ failure 17 days after admission to intensive care unit. No bacterial or fungal infection could be detected during his stay, but only two days before death the patient showed signs of rectal, orolabial and genital herpes infection. The presence of HSV-1 was detected in swabs taken from the lesions, oropharyngeal fluid as well as in plasma. Post-mortem polymerase chain reaction analyses confirmed a disseminated infection with HSV-1 involving various organs and tissues but excluding the central nervous system. Autopsy revealed a predominantly retroperitoneal diffuse large B-cell lymphoma as the suspected origin of immunosuppression underlying herpes simplex dissemination.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Jun Arii ◽  
Ayano Fukui ◽  
Yuta Shimanaka ◽  
Nozomu Kono ◽  
Hiroyuki Arai ◽  
...  

ABSTRACT Glycerophospholipids are major components of cell membranes. Phosphatidylethanolamine (PE) is a glycerophospholipid that is involved in multiple cellular processes, such as membrane fusion, the cell cycle, autophagy, and apoptosis. In this study, we investigated the role of PE biosynthesis in herpes simplex virus 1 (HSV-1) infection by knocking out the host cell gene encoding phosphate cytidylyltransferase 2, ethanolamine (Pcyt2), which is a key rate-limiting enzyme in one of the two major pathways for PE biosynthesis. Pcyt2 knockout reduced HSV-1 replication and caused an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm of an HSV-1-infected cell culture. A similar phenotype was observed when infected cells were treated with meclizine, which is an inhibitor of Pcyt2. In addition, treatment of HSV-1-infected mice with meclizine significantly reduced HSV-1 replication in the mouse brains and improved their survival rates. These results indicated that PE biosynthesis mediated by Pcyt2 was required for efficient HSV-1 envelopment in the cytoplasm of infected cells and for viral replication and pathogenicity in vivo. The results also identified the PE biosynthetic pathway as a possible novel target for antiviral therapy of HSV-associated diseases and raised an interesting possibility for meclizine repositioning for treatment of these diseases, since it is an over-the-counter drug that has been used for decades against nausea and vertigo in motion sickness. IMPORTANCE Glycerophospholipids in cell membranes and virus envelopes often affect viral entry and budding. However, the role of glycerophospholipids in membrane-associated events in viral replication in herpesvirus-infected cells has not been reported to date. In this study, we have presented data showing that cellular PE biosynthesis mediated by Pcyt2 is important for HSV-1 envelopment in the cytoplasm, as well as for viral replication and pathogenicity in vivo. This is the first report showing the importance of PE biosynthesis in herpesvirus infections. Our results showed that inhibition of Pcyt2, a key cell enzyme for PE synthesis, significantly inhibited HSV-1 replication and pathogenicity in mice. This suggested that the PE biosynthetic pathway, as well as the HSV-1 virion maturation pathway, can be a target for the development of novel anti-HSV drugs.


2019 ◽  
Vol 93 (22) ◽  
Author(s):  
Austin M. Stults ◽  
Gregory A. Smith

ABSTRACT Upon replication in mucosal epithelia and transmission to nerve endings, capsids of herpes simplex virus 1 (HSV-1) travel retrogradely within axons to peripheral ganglia, where life-long latent infections are established. A capsid-bound tegument protein, pUL37, is an essential effector of retrograde axonal transport and also houses a deamidase activity that antagonizes innate immune signaling. In this report, we examined whether the deamidase of HSV-1 pUL37 contributes to the neuroinvasive retrograde axonal transport mechanism. We conclude that neuroinvasion is enhanced by the deamidase, but the critical contribution of pUL37 to retrograde axonal transport functions independently of this activity. IMPORTANCE Herpes simplex virus 1 invades the nervous system by entering nerve endings and sustaining long-distance retrograde axonal transport to reach neuronal nuclei in ganglia of the peripheral nervous system. The incoming viral particle carries a deamidase activity on its surface that antagonizes antiviral responses. We examined the contribution of the deamidase to the hallmark neuroinvasive property of this virus.


2008 ◽  
Vol 82 (21) ◽  
pp. 10591-10599 ◽  
Author(s):  
Lizette Olga Durand ◽  
Bernard Roizman

ABSTRACT ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) regulatory protein that regulates the accumulation of a subset of late (γ2) proteins exemplified by UL38, UL41, and US11. ICP22 binds the cyclin-dependent kinase 9 (cdk9) but not cdk7, and this complex in conjunction with viral protein kinases phosphorylates the carboxyl terminus of RNA polymerase II (Pol II) in vitro. The primary function of cdk9 and its partners, the cyclin T variants, is in the elongation of RNA transcripts, although functions related to the initiation and processing of transcripts have also been reported. We report two series of experiments designed to probe the role of cdk9 in infected cells. In the first, infected cells were treated with 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), a specific inhibitor of cdk9. In cells treated with DRB, the major effect was in the accumulation of viral RNAs and proteins regulated by ICP22. The accumulation of α, β, or γ proteins not regulated by ICP22 was not affected by the drug. The results obtained with DRB were duplicated in cells transfected with small interfering RNA (siRNA) targeting cdk9 mRNAs. Interestingly, DRB and siRNA reduced the levels of ICP22 but not those of other α gene products. In addition, cdk9 and ICP22 appeared to colocalize with RNA Pol II in wild-type-virus-infected cells but not in ΔUL13-infected cells. We conclude that cdk9 plays a critical role in the optimization of expression of genes regulated by ICP22 and that one function of cdk9 in HSV-1-infected cells may be to bring ICP22 into the RNA Pol II transcriptional complex.


Sign in / Sign up

Export Citation Format

Share Document