scholarly journals Role of Phosphatidylethanolamine Biosynthesis in Herpes Simplex Virus 1-Infected Cells in Progeny Virus Morphogenesis in the Cytoplasm and in Viral Pathogenicity In Vivo

2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Jun Arii ◽  
Ayano Fukui ◽  
Yuta Shimanaka ◽  
Nozomu Kono ◽  
Hiroyuki Arai ◽  
...  

ABSTRACT Glycerophospholipids are major components of cell membranes. Phosphatidylethanolamine (PE) is a glycerophospholipid that is involved in multiple cellular processes, such as membrane fusion, the cell cycle, autophagy, and apoptosis. In this study, we investigated the role of PE biosynthesis in herpes simplex virus 1 (HSV-1) infection by knocking out the host cell gene encoding phosphate cytidylyltransferase 2, ethanolamine (Pcyt2), which is a key rate-limiting enzyme in one of the two major pathways for PE biosynthesis. Pcyt2 knockout reduced HSV-1 replication and caused an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm of an HSV-1-infected cell culture. A similar phenotype was observed when infected cells were treated with meclizine, which is an inhibitor of Pcyt2. In addition, treatment of HSV-1-infected mice with meclizine significantly reduced HSV-1 replication in the mouse brains and improved their survival rates. These results indicated that PE biosynthesis mediated by Pcyt2 was required for efficient HSV-1 envelopment in the cytoplasm of infected cells and for viral replication and pathogenicity in vivo. The results also identified the PE biosynthetic pathway as a possible novel target for antiviral therapy of HSV-associated diseases and raised an interesting possibility for meclizine repositioning for treatment of these diseases, since it is an over-the-counter drug that has been used for decades against nausea and vertigo in motion sickness. IMPORTANCE Glycerophospholipids in cell membranes and virus envelopes often affect viral entry and budding. However, the role of glycerophospholipids in membrane-associated events in viral replication in herpesvirus-infected cells has not been reported to date. In this study, we have presented data showing that cellular PE biosynthesis mediated by Pcyt2 is important for HSV-1 envelopment in the cytoplasm, as well as for viral replication and pathogenicity in vivo. This is the first report showing the importance of PE biosynthesis in herpesvirus infections. Our results showed that inhibition of Pcyt2, a key cell enzyme for PE synthesis, significantly inhibited HSV-1 replication and pathogenicity in mice. This suggested that the PE biosynthetic pathway, as well as the HSV-1 virion maturation pathway, can be a target for the development of novel anti-HSV drugs.

2009 ◽  
Vol 84 (1) ◽  
pp. 153-162 ◽  
Author(s):  
Takahiko Imai ◽  
Ken Sagou ◽  
Jun Arii ◽  
Yasushi Kawaguchi

ABSTRACT We recently reported that the herpes simplex virus 1 (HSV-1) Us3 protein kinase phosphorylates threonine at position 887 (Thr-887) in the cytoplasmic tail of envelope glycoprotein B (gB) (A. Kato, J. Arii, I. Shiratori, H. Akashi, H. Arase, and Y. Kawaguchi, J. Virol. 83:250-261, 2009; T. Wisner, C. C. Wright, A. Kato, Y. Kawaguchi, F. Mou, J. D. Baines, R. J. Roller and D. C. Johnson, J. Virol. 83:3115-3126, 2009). In the studies reported here, we examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo and present data showing that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis and periocular skin disease in mice. The same effects have been reported for mice infected with a recombinant HSV-1 carrying a kinase-inactive mutant of Us3. These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically reacted with phosphorylated gB Thr-887 and used this antibody to show that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly on the cell surface of infected cells.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Xing Liu ◽  
Bin He

ABSTRACTOncolytic herpes simplex virus 1 (HSV-1), devoid of the γ134.5 gene, exerts antitumor activities. However, the oncolytic effects differ, ranging from pronounced to little responses. Although viral and host factors are involved, much remains to be deciphered. Here we report that engineered HSV-1 ΔN146, bearing amino acids 147 to 263 of γ134.5, replicates competently in and lyses malignant cells refractory to the γ134.5 null mutant. Upon infection, ΔN146 precludes phosphorylation of translation initiation factor eIF2α (α subunit of eukaryotic initiation factor 2), ensuring viral protein synthesis. On the other hand, ΔN146 activates interferon (IFN) regulatory factor 3 (IRF3) and IFN expression, known to prime immunity against virus and tumor. Nevertheless, ΔN146 exhibits sustained replication even exposed to exogenous IFN-α. In a 4T1 tumor model, ΔN146 markedly reduces tumor growth and metastasis formation. This coincides with viral replication or T cell infiltration in primary tumors. ΔN146 is undetectable in normal tissuesin vivo. Targeted HSV-1 editing results in a unique antineoplastic agent that enables inflammation without major interference of viral growth within tumor cells.IMPORTANCEOncolytic herpes simplex virus 1 is a promising agent for cancer immunotherapy. Due to a complex virus-host interaction, less is clear about what viral signature(s) constitutes a potent oncolytic backbone. Through molecular or genetic dissection, we showed that selective editing of the γ134.5 gene enables viral replication in malignant cells, activation of transcription factor IRF3, and subsequent induction of type I IFN. This translates into profoundly reduced primary tumor growth and metastasis burden in an aggressive breast carcinoma modelin vivo. Our work reveals a distinct oncolytic platform that is amendable for further development.


2021 ◽  
Author(s):  
Jun Arii ◽  
Kosuke Takeshima ◽  
Yuhei Maruzuru ◽  
Naoto Koyanagi ◽  
Yoshitaka Nakayama ◽  
...  

During the nuclear export of nascent nucleocapsids of herpesviruses, the nucleocapsids bud through the inner nuclear membrane (INM) by acquiring the INM as a primary envelope (primary envelopment). We recently reported that herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), which consists of UL34 and UL31, interacts with an ESCRT-III adaptor ALIX and recruits ESCRT-III machinery to the INM for efficient primary envelopment. In this study, we identified a cluster of six arginine residues in the disordered domain of UL34 as a minimal region required for the interaction with ALIX as well as the recruitment of ALIX and an ESCRT-III protein CHMP4B to the INM in HSV-1-infected cells. Mutations in the arginine cluster exhibited phenotypes similar to those with ESCRT-III inhibition reported previously, including the mis-localization of NEC, induction of membranous invagination structures containing enveloped virions, aberrant accumulation of enveloped virions in the invaginations and perinuclear space, and reduction of viral replication. We also showed that the effect of the arginine cluster in UL34 on HSV-1 replication was dependent primarily on ALIX. These results indicated that the arginine cluster in the disordered domain of UL34 was required for the interaction with ALIX and the recruitment of ESCRT-III machinery to the INM to promote primary envelopment. IMPORTANCE Herpesvirus UL34 homologs contain conserved amino-terminal domains that mediate vesicle formation through interactions with UL31 homologs during primary envelopment. UL34 homologs also comprise other domains adjacent to their membrane-anchoring regions, which differ in length, are variable in herpesviruses and do not form distinguished secondary structures. However, the role of these disordered domains in infected cells remains to be elucidated. In this study, we present data suggesting that the arginine cluster in the disordered domain of HSV-1 UL34 mediates the interaction with ALIX, thereby leading to the recruitment of ESCRT-III machinery to the INM for efficient primary envelopment. This is the first study to report the role of the disordered domain of a UL34 homolog in herpesvirus infections.


mBio ◽  
2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Kevin F. Bryant ◽  
Robert C. Colgrove ◽  
David M. Knipe

ABSTRACTLike other DNA viruses that replicate in the nucleus, herpes simplex virus 1 (HSV-1) regulates the association of histones with its genome to promote viral replication and gene expression. We previously demonstrated that SNF2H, a member of the ISWI family of chromatin-remodeling factors, is concentrated in HSV-1 replication compartments in the nuclei of infected cells, suggesting that this cellular enzyme plays a role in viral replication. We show here that small interfering RNA (siRNA)-mediated knockdown of SNF2H in HEp-2 cells resulted in an approximately 20-fold decrease in HSV-1 replication, arguing that SNF2H promotes efficient HSV-1 replication. Decreases in HSV-1 replication were observed with multiple SNF2H-specific siRNAs, and the extent of the replication decrease correlated with the amount of SNF2H knockdown, indicating that the phenotype resulted from decreased SNF2H levels rather than off-target effects of the siRNAs. We also observed a decrease in the accumulation of immediate-early (IE) gene products in HSV-1-infected cells in which SNF2H was knocked down. Histone H3 occupancy on viral promoters was increased in HSV-1-infected cells that were transfected with SNF2H-specific siRNAs, suggesting that SNF2H promotes removal of histones from viral promoters during infection. Furthermore, chromatin immunoprecipitation (ChIP) studies showed that SNF2H associated with the HSV-1 genome during infection, which suggests that SNF2H may directly remodel viral chromatin. We hypothesize that SNF2H is recruited to viral promoters during HSV-1 infection, where it can remodel the chromatin state of the viral genome, facilitate the transcription of immediate-early genes, and enhance viral replication.IMPORTANCEIt is becoming increasingly appreciated that regulation of the state of chromatin is a major determinant in control of gene expression. It has also become clear that the state of chromatin of the herpes simplex virus 1 (HSV-1) genome is dynamically regulated during both productive and latent stages of infection. In addition, multiple viral gene products have been reported to play roles in regulating the viral chromatin state. However, the cellular chromatin-remodeling factors involved in altering nucleosome occupancy at viral genes remain largely unknown. The results in this report represent the first evidence that cellular chromatin-remodeling proteins, and SNF2H in particular, can play important roles in regulating the chromatin state of the HSV-1 genome during infection. This work also further establishes HSV-1 infection as a useful model to study chromatin control of gene expression and suggests that disrupting the regulation of viral chromatin states can possibly be exploited as a novel antiviral therapeutic target.


2008 ◽  
Vol 82 (21) ◽  
pp. 10591-10599 ◽  
Author(s):  
Lizette Olga Durand ◽  
Bernard Roizman

ABSTRACT ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) regulatory protein that regulates the accumulation of a subset of late (γ2) proteins exemplified by UL38, UL41, and US11. ICP22 binds the cyclin-dependent kinase 9 (cdk9) but not cdk7, and this complex in conjunction with viral protein kinases phosphorylates the carboxyl terminus of RNA polymerase II (Pol II) in vitro. The primary function of cdk9 and its partners, the cyclin T variants, is in the elongation of RNA transcripts, although functions related to the initiation and processing of transcripts have also been reported. We report two series of experiments designed to probe the role of cdk9 in infected cells. In the first, infected cells were treated with 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), a specific inhibitor of cdk9. In cells treated with DRB, the major effect was in the accumulation of viral RNAs and proteins regulated by ICP22. The accumulation of α, β, or γ proteins not regulated by ICP22 was not affected by the drug. The results obtained with DRB were duplicated in cells transfected with small interfering RNA (siRNA) targeting cdk9 mRNAs. Interestingly, DRB and siRNA reduced the levels of ICP22 but not those of other α gene products. In addition, cdk9 and ICP22 appeared to colocalize with RNA Pol II in wild-type-virus-infected cells but not in ΔUL13-infected cells. We conclude that cdk9 plays a critical role in the optimization of expression of genes regulated by ICP22 and that one function of cdk9 in HSV-1-infected cells may be to bring ICP22 into the RNA Pol II transcriptional complex.


2016 ◽  
Vol 90 (12) ◽  
pp. 5622-5635 ◽  
Author(s):  
Akihisa Kato ◽  
Tomoko Ando ◽  
Shinya Oda ◽  
Mizuki Watanabe ◽  
Naoto Koyanagi ◽  
...  

ABSTRACTThe herpes simplex virus 1 (HSV-1) Us8A gene overlaps the gene that encodes glycoprotein E (gE). Previous studies have investigated the roles of Us8A in HSV-1 infection using null mutations in Us8A and gE; therefore, the role of Us8A remains to be elucidated. In this study, we investigated the function of Us8A and its phosphorylation at serine 61 (Ser-61), which we recently identified as a phosphorylation site by mass spectrometry-based phosphoproteomic analysis of HSV-1-infected cells, in HSV-1 pathogenesis. We observed that (i) the phosphorylation of Us8A Ser-61 in infected cells was dependent on the activity of the virus-encoded Us3 protein kinase; (ii) the Us8A null mutant virus exhibited a 10-fold increase in the 50% lethal dose for virulence in the central nervous system (CNS) of mice following intracranial infection compared with a repaired virus; (iii) replacement of Ser-61 with alanine (S61A) in Us8A had little effect on virulence in the CNS of mice following intracranial infection, whereas it significantly reduced the mortality of mice following ocular infection to levels similar to the Us8A null mutant virus; (iv) the Us8A S61A mutation also significantly reduced viral yields in mice following ocular infection, mainly in the trigeminal ganglia and brains; and (v) a phosphomimetic mutation at Us8A Ser-61 restored wild-type viral yields and virulence. Collectively, these results indicate that Us8A is a novel HSV-1 virulence factor and suggest that the Us3-mediated phosphorylation of Us8A Ser-61 regulates Us8A function for viral invasion into the CNS from peripheral sites.IMPORTANCEThe DNA genomes of viruses within the subfamilyAlphaherpesvirinaeare divided into unique long (UL) and unique short (Us) regions. Us regions contain alphaherpesvirus-specific genes. Recently, high-throughput sequencing of ocular isolates of HSV-1 showed that Us8A was the most highly conserved of 13 herpes simplex virus 1 (HSV-1) genes mapped to the Us region, suggesting Us8A may have an important role in the HSV-1 life cycle. However, the specific role of Us8A in HSV-1 infection remains to be elucidated. Here, we show that Us8A is a virulence factor for HSV-1 infection in mice, and the function of Us8A for viral invasion into the central nervous system from peripheral sites is regulated by Us3-mediated phosphorylation of the protein at Ser-61. This is the first study to report the significance of Us8A and its regulation in HSV-1 infection.


2002 ◽  
Vol 76 (18) ◽  
pp. 9355-9367 ◽  
Author(s):  
Pascal Lopez ◽  
Robert J. Jacob ◽  
Bernard Roizman

ABSTRACT A key early event in the replication of herpes simplex virus 1 (HSV-1) is the localization of infected-cell protein no. 0 (ICP0) in nuclear structures knows as ND10 or promyelocytic leukemia oncogenic domains (PODs). This is followed by dispersal of ND10 constituents such as the promyelocytic leukemia protein (PML), CREB-binding protein (CBP), and Daxx. Numerous experiments have shown that this dispersal is mediated by ICP0. PML is thought to be the organizing structural component of ND10. To determine whether the virus targets PML because it is inimical to viral replication, telomerase-immortalized human foreskin fibroblasts and HEp-2 cells were transduced with wild-type baculovirus or a baculovirus expressing the M r 69,000 form of PML. The transduced cultures were examined for expression and localization of PML in mock-infected and HSV-1-infected cells. The results obtained from studies of cells overexpressing PML were as follows. (i) Transduced cells accumulate large amounts of unmodified and SUMO-I-modified PML. (ii) Mock-infected cells exhibited enlarged ND10 structures containing CBP and Daxx in addition to PML. (iii) In infected cells, ICP0 colocalized with PML in ND10 early in infection, but the two proteins did not overlap or were juxtaposed in orderly structures. (iv) The enlarged ND10 structures remained intact at least until 12 h after infection and retained CBP and Daxx in addition to PML. (v) Overexpression of PML had no effect on the accumulation of viral proteins representative of α, β, or γ groups and had no effect on the accumulation of infectious virus in cells infected with wild-type virus or a mutant (R7910) from which the α0 genes had been deleted. These results indicate the following: (i) PML overexpressed in transduced cells cannot be differentiated from endogenous PML with respect to sumoylation and localization in ND10 structures. (ii) PML does not affect viral replication or the changes in the localization of ICP0 through infection. (iii) Disaggregation of ND10 structures is not an obligatory event essential for viral replication.


2009 ◽  
Vol 83 (11) ◽  
pp. 5773-5783 ◽  
Author(s):  
Ken Sagou ◽  
Takahiko Imai ◽  
Hiroshi Sagara ◽  
Masashi Uema ◽  
Yasushi Kawaguchi

ABSTRACT Us3 is a serine/threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). We recently identified serine at Us3 position 147 (Ser-147) as a physiological phosphorylation site of Us3 (A. Kato, M. Tanaka, M. Yamamoto, R. Asai, T. Sata, Y. Nishiyama, and Y. Kawaguchi, J. Virol. 82:6172-6189, 2008). In the present study, we investigated the effects of phosphorylation of Us3 Ser-147 on regulation of Us3 catalytic activity in infected cells and on HSV-1 pathogenesis. Our results were as follows. (i) Only a small fraction of Us3 purified from infected cells was phosphorylated at Ser-147. (ii) Us3 phosphorylated at Ser-147 purified from infected cells had significantly higher kinase activity than Us3 not phosphorylated at Ser-147. (iii) Phosphorylation of Us3 Ser-147 in infected cells was dependent on Us3 kinase activity. (iv) Replacement of Us3 Ser-147 by alanine significantly reduced viral replication in the mouse cornea and the development of herpes stromal keratitis and periocular skin disease in mice. These results indicated that Us3 catalytic activity is tightly regulated by autophosphorylation of Ser-147 in infected cells and that regulation of Us3 activity by autophosphorylation appeared to play a critical role in viral replication in vivo and in HSV-1 pathogenesis.


Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
J. D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Herpes simplex virus-1 (HSV-1) is a ubiquitous virus which is implicated in diseases ranging from self-curing cold sores to life-threatening infections. The 2500 Å diameter herpes virion is composed of a glycoprotein spike containing, lipid envelope, enclosing a protein layer (the tegument) in which is embedded the capsid (which contains the dsDNA genome). The B-, and A- and C-capsids, representing different morphogenetic stages in HSV-1 infected cells, are composed of 7, and 5 structural proteins respectively. The three capsid types are organized in similar T=16 icosahedral shells with 12 pentons, 150 hexons, and 320 connecting triplexes. Our previous 3D structure study at 26 Å revealed domain features of all these structural components and suggested probable locations for the outer shell proteins, VP5, VP26, VP19c and VP23. VP5 makes up most of both pentons and hexons. VP26 appeared to bind to the VP5 subunit in hexon but not to that in penton.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 196
Author(s):  
Sara Artusi ◽  
Emanuela Ruggiero ◽  
Matteo Nadai ◽  
Beatrice Tosoni ◽  
Rosalba Perrone ◽  
...  

The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.


Sign in / Sign up

Export Citation Format

Share Document