scholarly journals Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: a Reliable Approach for Delineating Multiple Phase-Variable Genes

mBio ◽  
2021 ◽  
Author(s):  
Shouji Yamamoto ◽  
Sunao Iyoda ◽  
Makoto Ohnishi

Campylobacter jejuni is the leading bacterial cause of foodborne gastroenteritis in developed countries and occasionally progresses to the autoimmune disease Guillain-Barré syndrome. A relatively large number of hypermutable simple sequence repeat (SSR) tracts in the C. jejuni genome markedly decreases its phenotypic stability through reversible changes in the ON or OFF expression states of the genes in which they reside, a phenomenon called phase variation.

2021 ◽  
Author(s):  
Shouji Yamamoto ◽  
Sunao Iyoda ◽  
Makoto Ohnishi

Hypermutability of simple sequence repeats (SSR) through DNA slippage is a major mechanism of phase variation in Campylobacter jejuni . The presence of multiple SSR-mediated phase-variable genes encoding enzymes that modify surface structures, including capsular polysaccharide (CPS) and lipooligosaccharide (LOS), generates high levels of structural variants within bacterial populations, thereby promoting adaptation to selective pressures in host environments. Therefore, the phenotypic diversity generated by phase variation can limit the reproducibility of results with C. jejuni ; therefore, researchers need to genetically control the mutability of multiple SSRs. Here, we show that natural “cotransformation” is an effective method for C. jejuni genome editing. Cotransformation is a trait of naturally competent bacteria that causes uptake and integration of multiple different DNA fragments, which has been recently adapted to multiplex genome editing by natural transformation (MuGENT), a method for introducing multiple scarless mutations into the genomes of these bacteria. We found that the cotransformation frequencies of antibiotic resistance gene-marked DNA fragments and unmarked DNA fragments reached ~40% in C. jejuni . To examine the feasibility of MuGENT in C. jejuni , we “locked” either different polyG SSR tracts in strain NCTC11168 (which are located in the biosynthetic CPS and LOS gene clusters) into either the ON or OFF configurations by interrupting the continuous runs of G residues without changing the encoded amino acids. This approach, termed “MuGENT-SSR,” enabled the generation of all eight edits within 2 weeks and the identification of a phase-locked strain with a highly stable type of Penner serotyping, a CPS-based serotyping scheme. Furthermore, extensive genome editing of this strain by MuGENT-SSR identified a phase-variable gene that determines the Penner serotype of NCTC11168. Thus, MuGENT-SSR provides a platform for genetic and phenotypic engineering of genetically unstable C. jejuni , making it a reliable approach for elucidating the mechanisms underlying phase-variable expression of specific phenotypes.


mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Jack Aidley ◽  
Shweta Rajopadhye ◽  
Nwanekka M. Akinyemi ◽  
Lea Lango-Scholey ◽  
Christopher D. Bayliss

ABSTRACT Phase variation occurs in many pathogenic and commensal bacteria and is a major generator of genetic variability. A putative advantage of phase variation is to counter reductions in variability imposed by nonselective bottlenecks during transmission. Genomes of Campylobacter jejuni, a widespread food-borne pathogen, contain multiple phase-variable loci whose rapid, stochastic variation is generated by hypermutable simple sequence repeat tracts. These loci can occupy a vast number of combinatorial expression states (phasotypes) enabling populations to rapidly access phenotypic diversity. The imposition of nonselective bottlenecks can perturb the relative frequencies of phasotypes, changing both within-population diversity and divergence from the initial population. Using both in vitro testing of C. jejuni populations and a simple stochastic simulation of phasotype change, we observed that single-cell bottlenecks produce output populations of low diversity but with bimodal patterns of either high or low divergence. Conversely, large bottlenecks allow divergence only by accumulation of diversity, while interpolation between these extremes is observed in intermediary bottlenecks. These patterns are sensitive to the genetic diversity of initial populations but stable over a range of mutation rates and number of loci. The qualitative similarities of experimental and in silico modeling indicate that the observed patterns are robust and applicable to other systems where localized hypermutation is a defining feature. We conclude that while phase variation will maintain bacterial population diversity in the face of intermediate bottlenecks, narrow transmission-associated bottlenecks could produce host-to-host variation in bacterial phenotypes and hence stochastic variation in colonization and disease outcomes. IMPORTANCE Transmission and within-host spread of pathogenic organisms are associated with selective and nonselective bottlenecks that significantly reduced population diversity. In several bacterial pathogens, hypermutable mechanisms have evolved that mediate high-frequency reversible switching of specific phenotypes, such as surface structures, and hence counteract bottleneck-associated reductions in population diversity. Here, we investigated how combinations of hypermutable simple sequence repeats interact with nonselective bottlenecks by using a stochastic computer model and experimental data for Campylobacter jejuni, a food-borne pathogen. We find that bottleneck size qualitatively alters the output populations, with large bottlenecks maintaining population diversity while small bottlenecks produce dramatic shifts in the prevalence of particular variants. We conclude that narrow bottlenecks are capable of producing host-to-host variation in repeat-controlled bacterial phenotypes, leading to a potential for stochastic person-to-person variations in disease outcome for C. jejuni and other organisms with similar hypermutable mechanisms. IMPORTANCE Transmission and within-host spread of pathogenic organisms are associated with selective and nonselective bottlenecks that significantly reduced population diversity. In several bacterial pathogens, hypermutable mechanisms have evolved that mediate high-frequency reversible switching of specific phenotypes, such as surface structures, and hence counteract bottleneck-associated reductions in population diversity. Here, we investigated how combinations of hypermutable simple sequence repeats interact with nonselective bottlenecks by using a stochastic computer model and experimental data for Campylobacter jejuni, a food-borne pathogen. We find that bottleneck size qualitatively alters the output populations, with large bottlenecks maintaining population diversity while small bottlenecks produce dramatic shifts in the prevalence of particular variants. We conclude that narrow bottlenecks are capable of producing host-to-host variation in repeat-controlled bacterial phenotypes, leading to a potential for stochastic person-to-person variations in disease outcome for C. jejuni and other organisms with similar hypermutable mechanisms.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
M. E. Palmer ◽  
M. Lipsitch ◽  
E. R. Moxon ◽  
C. D. Bayliss

ABSTRACT Simple sequence repeat (SSR) tracts produce stochastic on-off switching, or phase variation, in the expression of a panoply of surface molecules in many bacterial commensals and pathogens. A change to the number of repeats in a tract may alter the phase of the translational reading frame, which toggles the on-off state of the switch. Here, we construct an in silico SSR locus with mutational dynamics calibrated to those of the Haemophilus influenzae mod locus. We simulate its evolution in a regimen of two alternating environments, simultaneously varying the selection coefficient, s, and the epoch length, T. Some recent work in a simpler (two-locus) model suggested that stochastic switching in a regimen of two alternating environments may be evolutionarily favored only if the selection coefficients in the two environments are nearly equal (“symmetric”) or selection is very strong. This finding was puzzling, as it greatly restricted the conditions under which stochastic switching might evolve. Instead, we find agreement with other recent theoretical work, observing selective utility for stochastic switching if the product sT is large enough for the favored state to nearly fix in both environments. Symmetry is required neither in s nor in sT. Because we simulate finite populations and use a detailed model of the SSR locus, we are also able to examine the impact of population size and of several SSR locus parameters. Our results indicate that conditions favoring evolution and maintenance of SSR loci in bacteria are quite broad. IMPORTANCE Bacteria experience frequent changes of environment during the infection cycle. One means to rapidly adapt is stochastic switching: a bacterial lineage will stochastically produce a variety of genotypes, so that some descendants will survive if the environment changes. Stochastic switching mediated by simple sequence repeat (SSR) loci is widespread among bacterial commensals and pathogens and influences critical interactions with host surfaces or immune effectors, thereby affecting host persistence, transmission, and virulence. Here, we use the most detailed in silico model of an SSR locus to date, with its phase variation calibrated to match the mod locus of Haemophilus influenzae. The type III restriction-modification system encoded by mod participates in the regulation of multiple other genes; thus, SSR-mediated phase variation of mod has far-reaching cis-regulatory effects. This coupling of phase-variable switching to complex phenotypic effects has been described as the “phasevarion” and is central to understanding the infection cycle of bacterial commensals and pathogens.


2017 ◽  
Vol 199 (14) ◽  
Author(s):  
Brittany Pequegnat ◽  
Renee M. Laird ◽  
Cheryl P. Ewing ◽  
Christina L. Hill ◽  
Eman Omari ◽  
...  

ABSTRACT Campylobacter jejuni polysaccharide capsules (CPS) are characterized by the presence of nonstoichiometric O-methyl phosphoramidate (MeOPN) modifications. The lack of stoichiometry is due to phase variation at homopolymeric tracts within the MeOPN transferase genes. C. jejuni strain 81-176 contains two MeOPN transferase genes and has been shown previously to contain MeOPN modifications at the 2 and 6 positions of the galactose (Gal) moiety in the CPS. We demonstrate here that one of the two MeOPN transferases, encoded by CJJ81176_1435, is bifunctional and is responsible for the addition of MeOPN to both the 2 and the 6 positions of Gal. A new MeOPN at the 4 position of Gal was observed in a mutant lacking the CJJ81176_1435 transferase and this was encoded by the CJJ81176_1420 transferase. During routine growth of 81-176, the CJJ81176_1420 transferase was predominantly in an off configuration, while the CJJ81176_1435 transferase was primarily on. However, exposure to normal human serum selected for cells expressing the CJJ81176_1420 transferase. MeOPN modifications appear to block binding of naturally occurring antibodies to the 81-176 CPS. The absence of MeOPN-4-Gal resulted in enhanced sensitivity to serum killing, whereas the loss of MeOPN-2-Gal and MeOPN-6-Gal resulted in enhanced resistance to serum killing, perhaps by allowing more MeOPN to be put onto the 4 position of Gal. IMPORTANCE Campylobacter jejuni undergoes phase variation in genes encoding surface antigens, leading to the concept that a strain of this organism consists of multiple genotypes that are selected for fitness in various environments. Methyl phosphoramidate modifications on the capsule of C. jejuni block access of preexisting antibodies in normal human sera to the polysaccharide chain, thus preventing activation of the classical arm of the complement cascade. We show that the capsule of strain 81-176 contains more sites of MeOPN modifications than previously recognized and that one site, on the 4 position of galactose, is more critical to complement resistance than the others. Exposure to normal human serum selects for variants in the population expressing this MeOPN modification.


2019 ◽  
Vol 87 (5) ◽  
Author(s):  
Zachary N. Phillips ◽  
Charles Brizuela ◽  
Amy V. Jennison ◽  
Megan Staples ◽  
Keith Grimwood ◽  
...  

ABSTRACTNontypeableHaemophilus influenzae(NTHi) is a major human pathogen, responsible for several acute and chronic infections of the respiratory tract. The incidence of invasive infections caused by NTHi is increasing worldwide. NTHi is able to colonize the nasopharynx asymptomatically, and the exact change(s) responsible for transition from benign carriage to overt disease is not understood. We have previously reported that phase variation (the rapid and reversible ON-OFF switching of gene expression) of particular lipooligosaccharide (LOS) glycosyltransferases occurs during transition from colonizing the nasopharynx to invading the middle ear. Variation in the structure of the LOS is dependent on the ON/OFF expression status of each of the glycosyltransferases responsible for LOS biosynthesis. In this study, we surveyed a collection of invasive NTHi isolates for ON/OFF expression status of seven phase-variable LOS glycosyltransferases. We report that the expression state of the LOS biosynthetic genesoafAON andlic2AOFF shows a correlation with invasive NTHi isolates. We hypothesize that these gene expression changes contribute to the invasive potential of NTHi. OafA expression, which is responsible for the addition of anO-acetyl group onto the LOS, has been shown to impart a phenotype of increased serum resistance and may serve as a marker for invasive NTHi.


2019 ◽  
Vol 47 (4) ◽  
pp. 1131-1141 ◽  
Author(s):  
Zachary N. Phillips ◽  
Greg Tram ◽  
Kate L. Seib ◽  
John M. Atack

Abstract Phase-variation of genes is defined as the rapid and reversible switching of expression — either ON-OFF switching or the expression of multiple allelic variants. Switching of expression can be achieved by a number of different mechanisms. Phase-variable genes typically encode bacterial surface structures, such as adhesins, pili, and lipooligosaccharide, and provide an extra contingency strategy in small-genome pathogens that may lack the plethora of ‘sense-and-respond’ gene regulation systems found in other organisms. Many bacterial pathogens also encode phase-variable DNA methyltransferases that control the expression of multiple genes in systems called phasevarions (phase-variable regulons). The presence of phase-variable genes allows a population of bacteria to generate a number of phenotypic variants, some of which may be better suited to either colonising certain host niches, surviving a particular environmental condition and/or evading an immune response. The presence of phase-variable genes complicates the determination of an organism's stably expressed antigenic repertoire; many phase-variable genes are highly immunogenic, and so would be ideal vaccine candidates, but unstable expression due to phase-variation may allow vaccine escape. This review will summarise our current understanding of phase-variable genes that switch expression by a variety of mechanisms, and describe their role in disease and pathobiology.


mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
John M. Atack ◽  
Chengying Guo ◽  
Thomas Litfin ◽  
Long Yang ◽  
Patrick J. Blackall ◽  
...  

ABSTRACT N6-Adenine DNA methyltransferases associated with some Type I and Type III restriction-modification (R-M) systems are able to undergo phase variation, randomly switching expression ON or OFF by varying the length of locus-encoded simple sequence repeats (SSRs). This variation of methyltransferase expression results in genome-wide methylation differences and global changes in gene expression. These epigenetic regulatory systems are called phasevarions, phase-variable regulons, and are widespread in bacteria. A distinct switching system has also been described in Type I R-M systems, based on recombination-driven changes in hsdS genes, which dictate the DNA target site. In order to determine the prevalence of recombination-driven phasevarions, we generated a program called RecombinationRepeatSearch to interrogate REBASE and identify the presence and number of inverted repeats of hsdS downstream of Type I R-M loci. We report that 3.9% of Type I R-M systems have duplicated variable hsdS genes containing inverted repeats capable of phase variation. We report the presence of these systems in the major pathogens Enterococcus faecalis and Listeria monocytogenes, which could have important implications for pathogenesis and vaccine development. These data suggest that in addition to SSR-driven phasevarions, many bacteria have independently evolved phase-variable Type I R-M systems via recombination between multiple, variable hsdS genes. IMPORTANCE Many bacterial species contain DNA methyltransferases that have random on/off switching of expression. These systems, called phasevarions (phase-variable regulons), control the expression of multiple genes by global methylation changes. In every previously characterized phasevarion, genes involved in pathobiology, antibiotic resistance, and potential vaccine candidates are randomly varied in their expression, commensurate with methyltransferase switching. Our systematic study to determine the extent of phasevarions controlled by invertible Type I R-M systems will provide valuable information for understanding how bacteria regulate genes and is key to the study of physiology, virulence, and vaccine development; therefore, it is critical to identify and characterize phase-variable methyltransferases controlling phasevarions.


2019 ◽  
Vol 88 (2) ◽  
Author(s):  
Srinjoy Chakraborti ◽  
Sunita Gulati ◽  
Bo Zheng ◽  
Frank J. Beurskens ◽  
Janine Schuurman ◽  
...  

ABSTRACT The sialylatable lacto-N-neotetraose (LNnT; Gal-GlcNAc-Gal-Glc) moiety from heptose I (HepI) of the lipooligosaccharide (LOS) of Neisseria gonorrhoeae undergoes positive selection during human infection. Lactose (Gal-Glc) from HepII, although phase variable, is commonly expressed in humans; loss of HepII lactose compromises gonococcal fitness in mice. Anti-LOS monoclonal antibody (MAb) 2C7, a promising antigonococcal immunotherapeutic that elicits complement-dependent bactericidal activity and attenuates gonococcal colonization in mice, recognizes an epitope comprised of lactoses expressed simultaneously from HepI and HepII. Glycan extensions beyond lactose on HepI modulate binding and function of MAb 2C7 in vitro. Here, four gonococcal LOS mutants, each with lactose from HepII but fixed (unable to phase-vary) LOS HepI glycans extended beyond the lactose substitution of HepI (lactose alone, Gal-lactose, LNnT, or GalNAc-LNnT), were used to define how HepI glycan extensions affect (i) mouse vaginal colonization and (ii) efficacy in vitro and in vivo of a human IgG1 chimeric derivative of MAb 2C7 (2C7-Ximab) with a complement-enhancing E-to-G Fc mutation at position 430 (2C7-Ximab-E430G). About 10-fold lower 2C7-Ximab-E430G concentrations achieved similar complement-dependent killing of three gonococcal mutants with glycan extensions beyond lactose-substituted HepI (lactose alone, LNnT, or GalNAc-LNnT) as 2C7-Ximab (unmodified Fc). The fourth mutant (Gal-lactose) resisted direct complement-dependent killing but was killed approximately 70% by 2C7-Ximab-E430G in the presence of polymorphonuclear leukocytes and complement. Only mutants with (sialylatable) LNnT from HepI colonized mice for >3 days, reiterating the importance of LNnT sialylation for infection. 2C7-Ximab-E430G significantly attenuated colonization caused by the virulent mutants.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Luke R. Green ◽  
Jay Lucidarme ◽  
Neelam Dave ◽  
Hannah Chan ◽  
Stephen Clark ◽  
...  

ABSTRACT A recombinant NadA protein is one of the four major protective antigens of 4C-MenB (Bexsero), a vaccine developed for serogroup B Neisseria meningitidis (MenB). The meningococcal antigen typing system (MATS) is utilized as a high-throughput assay for assessing the invasive MenB strain coverage of 4C-MenB. Where present, the nadA gene is subject to phase-variable changes in transcription due to a 5′TAAA repeat tract located in a regulatory region. The promoter-containing intergenic region (IGR) sequences and 5′TAAA repeat numbers were determined for 906 invasive meningococcal disease isolates possessing the nadA gene. Exclusion of the 5′TAAA repeats reduced the number of IGR alleles from 82 to 23. Repeat numbers were associated with low and high levels of NadA expression by Western blotting and enzyme-linked immunosorbent assay (ELISA). Low-expression repeat numbers were present in 83% of 179 MenB isolates with NadA-2/3 or NadA-1 peptide variants and 68% of 480 MenW ST-11 complex isolates with NadA-2/3 peptide variants. For isolates with vaccine-compatible NadA variants, 93% of MATS-negative isolates were associated with low-expression repeat numbers, whereas 63% of isolates with MATS relative potency (RP) scores above the 95% confidence interval for the positive bactericidal threshold had high-expression repeat numbers. Analysis of 5′TAAA repeat numbers has potential as a rapid, high-throughput method for assessing strain coverage for the NadA component of 4C-MenB. A key application will be assessing coverage in meningococcal disease cases where confirmation is by PCR only and MATS cannot be applied.


2018 ◽  
Vol 200 (16) ◽  
Author(s):  
Bente Børud ◽  
Guro K. Bårnes ◽  
Ola Brønstad Brynildsrud ◽  
Elisabeth Fritzsønn ◽  
Dominique A. Caugant

ABSTRACTSpecies within the genusNeisseriadisplay significant glycan diversity associated with theO-linked protein glycosylation (pgl) systems due to phase variation and polymorphic genes and gene content. The aim of this study was to examine in detail thepglgenotype and glycosylation phenotype in meningococcal isolates and the changes occurring during short-term asymptomatic carriage. Paired meningococcal isolates derived from 50 asymptomatic meningococcal carriers, taken about 2 months apart, were analyzed with whole-genome sequencing. TheO-linked protein glycosylation genes were characterized in detail using the Genome Comparator tool at the https://pubmlst.org/ database. Immunoblotting with glycan-specific antibodies (Abs) was used to investigate the protein glycosylation phenotype. All majorpgllocus polymorphisms identified inNeisseria meningitidisto date were present in our isolate collection, with the variable presence ofpglGandpglH, both in combination with eitherpglBorpglB2. We identified significant changes and diversity in thepglgenotype and/or glycan phenotype in 96% of the paired isolates. There was also a high degree of glycan microheterogeneity, in which different variants of glycan structures were found at a given glycoprotein. The main mechanism responsible for the observed differences was phase-variable expression of the involved glycosyltransferases and theO-acetyltransferase. To our knowledge, this is the first characterization of thepglgenotype and glycosylation phenotype in a larger strain collection. This report thus provides important insight into glycan diversity inN. meningitidisand into the phase variability changes that influence the expressed glycoform repertoire during meningococcal carriage.IMPORTANCEBacterial meningitis is a serious global health problem, and one of the major causative organisms isNeisseria meningitidis, which is also a common commensal in the upper respiratory tract of healthy humans. In bacteria, numerous loci involved in biosynthesis of surface-exposed antigenic structures that are involved in the interaction between bacteria and host are frequently subjected to homologous recombination and phase variation. These mechanisms are well described inNeisseria, and phase variation provides the ability to change these structures reversibly in response to the environment. Protein glycosylation systems are becoming widely identified in bacteria, and yet little is known about the mechanisms and evolutionary forces influencing glycan composition during carriage and disease.


Sign in / Sign up

Export Citation Format

Share Document