scholarly journals Dendritic Cell Autophagy Contributes to Herpes Simplex Virus-Driven Stromal Keratitis and Immunopathology

mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Yike Jiang ◽  
Xiaotang Yin ◽  
Patrick M. Stuart ◽  
David A. Leib

ABSTRACTHerpetic stromal keratitis (HSK) is a blinding ocular disease that is initiated by HSV-1 and characterized by chronic inflammation in the cornea. Although HSK immunopathology of the cornea is well documented in animal models, events preceding this abnormal inflammatory cascade are poorly understood. In this study, we have examined the activation of pathological CD4+T cells in the development of HSK. Dendritic cell autophagy (DC-autophagy) is an important pathway regulating major histocompatibility complex class II (MHCII)-dependent antigen presentation and proper CD4+T cell activation during infectious diseases. Using DC-autophagy-deficient mice, we found that DC-autophagy significantly and specifically contributes to HSK disease without impacting early innate immune infiltration, viral clearance, or host survival. Instead, the observed phenotype was attributable to the abrogated activation of CD4+T cells and reduced inflammation in HSK lesions. We conclude that DC-autophagy is an important contributor to primary HSK immunopathology upstream of CD4+T cell activation.IMPORTANCEHerpetic stromal keratitis (HSK) is the leading cause of infectious blindness in the United States and a rising cause worldwide. HSK is induced by herpes simplex virus 1 but is considered a disease of inappropriately sustained inflammation driven by CD4+T cells. In this study, we investigated whether pathways preceding CD4+T cell activation affect disease outcome. We found that autophagy in dendritic cells significantly contributed to the incidence of HSK. Dendritic cell autophagy did not alter immune control of the virus or neurological disease but specifically augmented CD4+T cell activation and pathological corneal inflammation. This study broadens our understanding of the immunopathology that drives HSK and implicates the autophagy pathway as a new target for therapeutic intervention against this incurable form of infectious blindness.

2019 ◽  
Vol 93 (16) ◽  
Author(s):  
Xiao-Tang Yin ◽  
Nicholas K. Baugnon ◽  
Chloe A. Potter ◽  
Shannon Tai ◽  
Tammie L. Keadle ◽  
...  

ABSTRACTCorneal infection with herpes simplex virus 1 (HSV-1) leads to infection of trigeminal ganglia (TG), typically followed by the establishment of latency in the infected neurons. When latency is disrupted, the virus reactivates and migrates back to the cornea, where it restimulates the immune response, leading to lesions in a disease called herpetic stromal keratitis (HSK). HSK requires T cell activation, as in the absence of T cells there is no disease. We decided to determine if CD28 costimulation of T cells was required in HSK. The results indicated that C57BL/6 CD28−/−and BALB/c CD28−/−mice failed to develop recurrent HSK, while their wild-type counterparts did. In order to better understand the dynamics of TG infection in these mice, we evaluated the amount of virus in infected TG and the number of individual neurons harboring latent virus. The results indicated that CD28−/−mice possessed significantly increased genome levels in their TG but many fewer LAT-positive cells than wild-type mice from day 7 to day 30 but that after day 30 these differences became nonsignificant. We next evaluated total and antigen-specific CD8+T cells in TG. The results indicated that there were significantly fewer CD8 T cells in TG from day 10 to day 25 but that after that the differences were not significant. Taken together, these data suggest that CD28 costimulation is required for HSK but that while initial infection of TG is greater in CD28−/−mice, this begins to normalize with time and this normalization is concurrent with the delayed development of antigen-specific CD8+T cells.IMPORTANCEWe study the pathogenesis of herpes simplex virus-mediated corneal disease. T cells play a critical role both in disease and in the maintenance of latency in neurons. Consequently, the focus of this study was to evaluate the role that T cell costimulation plays both in corneal disease and in controlling the ability of the virus to maintain a stable infection of the ganglia that innervate the cornea. We demonstrate that in the absence of costimulation with CD28, corneal disease does not take place. However, this costimulation does not prevent the ability of CD8+T cells to develop and, thus, control latent infection of neurons. We conclude from these studies that CD28 costimulation is required for corneal destructive immune responses but that CD8+T cells develop over time and help to maintain latency.


1998 ◽  
Vol 177 (2) ◽  
pp. 484-488 ◽  
Author(s):  
Georges M. G. M. Verjans ◽  
Lies Remeijer ◽  
Robert S. van Binnendijk ◽  
José G. C. Cornelissen ◽  
Hennie J. Völker‐Dieben ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Angello Retamal-Díaz ◽  
Kayla A. Weiss ◽  
Eduardo I. Tognarelli ◽  
Mariela Freire ◽  
Susan M. Bueno ◽  
...  

mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Philipe A. M. Gobeil ◽  
David A. Leib

ABSTRACTThe cellular autophagy response induced by herpes simplex virus 1 (HSV-1) is countered by the viral γ34.5 protein. γ34.5 modulates autophagy by binding to the host autophagy protein Beclin-1 and through this binding inhibits the formation of autophagosomes in fibroblasts and neurons. In contrast, in this study dendritic cells (DCs) infected with HSV-1 showed an accumulation of autophagosomes and of the long-lived protein p62. No such accumulations were observed in DCs infected with a γ34.5-null virus or a virus lacking the Beclin-binding domain (BBD) of γ34.5. To explore this further, we established stably transduced DC lines to show that γ34.5 expression alone induced autophagosome accumulation yet prevented p62 degradation. In contrast, DCs expressing a BBD-deleted mutant of γ34.5 were unable to modulate autophagy. DCs expressing γ34.5 were less capable of stimulating T-cell activation and proliferation in response to intracellular antigens, demonstrating an immunological consequence of inhibiting autophagy. Taken together, these data show that in DCs, γ34.5 antagonizes the maturation of autophagosomes and T cell activation in a BBD-dependent manner, illustrating a unique interface between HSV and autophagy in antigen-presenting cells.IMPORTANCEHerpes simplex virus 1 (HSV-1) is a highly prevalent pathogen causing widespread morbidity and some mortality. HSV infections are lifelong, and there are no vaccines or antivirals to cure HSV infections. The ability of HSV to modulate host immunity is critical for its virulence. HSV inhibits host autophagy, a pathway with importance in many areas of health and disease. Autophagy is triggered by many microbes, some of which harness autophagy for replication; others evade autophagy or prevent it from occurring. Autophagy is critical for host defense, either by directly degrading the invading pathogen (“xenophagy”) or by facilitating antigen presentation to T cells. In this study, we show that HSV manipulates autophagy through an unsuspected mechanism with a functional consequence of reducing T cell stimulation. These data further our understanding of how HSV evades host immunity to persist for the lifetime of its host, facilitating its spread in the human population.


2013 ◽  
Vol 29 (1) ◽  
pp. 94-98 ◽  
Author(s):  
Alison C. Roxby ◽  
Amy Y. Liu ◽  
Alison L. Drake ◽  
James N. Kiarie ◽  
Barbra Richardson ◽  
...  

1997 ◽  
Vol 56 ◽  
pp. 22-23
Author(s):  
G.M.G.M. Verjans ◽  
L. Remeijer ◽  
R.S. van Binnendijk ◽  
J. Cornelissen ◽  
H.J. Völker-Dieben ◽  
...  

2007 ◽  
Vol 81 (22) ◽  
pp. 12200-12209 ◽  
Author(s):  
Lydia G. Thebeau ◽  
Sri P. Vagvala ◽  
Yee M. Wong ◽  
Lynda A. Morrison

ABSTRACT The interaction between B7 costimulation molecules on antigen-presenting cells and CD28 on antigen-responsive T cells is essential for T-cell activation and maturation of immune responses to herpes simplex virus (HSV) infection. Vaccine-induced immune responses also depend upon adequate upregulation of B7 costimulation molecules, but this signal may be limiting for replication-defective virus vaccines. We investigated whether expression of B7 costimulation molecules by a prototypical replication-defective antiviral vaccine could enhance immune responses to the vaccine and whether B7-1 and B7-2 would be similarly effective. We altered an ICP8− replication-defective strain of HSV type 2 (HSV-2), 5BlacZ, to encode either murine B7-1 or B7-2. B7 molecule expression was detected on the surface of cells infected in vitro and at the RNA level in tissue of immunized mice. Immunization of B7-1/B7-2 knockout mice with B7-encoding virus modestly expanded the number of gamma interferon-producing T cells and significantly augmented class-switched HSV-specific antibody responses compared with the parental virus. Mice immunized with either B7-expressing virus showed less replication of challenge virus in the genital mucosa than mice immunized with 5BlacZ, markedly fewer signs of genital and neurological disease, and little weight loss. Virtually all mice immunized with B7-encoding virus survived challenge with a large dose of HSV-2, whereas most 5BlacZ-immunized mice succumbed to infection. These results indicate that protective immune responses can be enhanced by the inclusion of host B7 costimulation molecules in a prototypical replication-defective HSV vaccine against HSV-2 genital infection and that B7-1 and B7-2 induce immune responses with similar capacities to fight HSV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document