scholarly journals Coexistence of Multiple Endemic and Pandemic Lineages of the Rice Blast Pathogen

mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Pierre Gladieux ◽  
Sébastien Ravel ◽  
Adrien Rieux ◽  
Sandrine Cros-Arteil ◽  
Henri Adreit ◽  
...  

ABSTRACTThe rice blast fungusMagnaporthe oryzae(syn.,Pyricularia oryzae) is both a threat to global food security and a model for plant pathology. Molecular pathologists need an accurate understanding of the origins and line of descent ofM. oryzaepopulations in order to identify the genetic and functional bases of pathogen adaptation and to guide the development of more effective control strategies. We used a whole-genome sequence analysis of samples from different times and places to infer details about the genetic makeup ofM. oryzaefrom a global collection of isolates. Analyses of population structure identified six lineages withinM. oryzae, including two pandemic on japonica and indica rice, respectively, and four lineages with more restricted distributions. Tip-dating calibration indicated thatM. oryzaelineages separated about a millennium ago, long after the initial domestication of rice. The major lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and evidence of DNA acquisition from multiple lineages. Tests for weak natural selection revealed that the pandemic spread of clonal lineages entailed an evolutionary “cost,” in terms of the accumulation of deleterious mutations. Our findings reveal the coexistence of multiple endemic and pandemic lineages with contrasting population and genetic characteristics within a widely distributed pathogen.IMPORTANCEThe rice blast fungusMagnaporthe oryzae(syn.,Pyricularia oryzae) is a textbook example of a rapidly adapting pathogen, and it is responsible for one of the most damaging diseases of rice. Improvements in our understanding ofMagnaporthe oryzae’s diversity and evolution are required to guide the development of more effective control strategies. We used genome sequencing data for samples from around the world to infer the evolutionary history ofM. oryzae. We found thatM. oryzaediversified about 1,000 years ago, separating into six main lineages: two pandemic on japonica and indica rice, respectively, and four with more restricted distributions. We also found that a lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and the acquisition of genetic material from multiple lineages. This work provides a population-level genomic framework for defining molecular markers for the control of rice blast and investigations of the molecular basis of differences in pathogenicity betweenM. oryzaelineages.

2017 ◽  
Author(s):  
Pierre Gladieux ◽  
Sébastien Ravel ◽  
Adrien Rieux ◽  
Sandrine Cros-Arteil ◽  
Henri Adreit ◽  
...  

AbstractThe rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae) is both a threat to global food security and a model for plant pathology. Molecular pathologists need an accurate understanding of the origins and line of descent of M. oryzae populations, to identify the genetic and functional bases of pathogen adaptation, and to guide the development of more effective control strategies. We used a whole-genome sequence analysis of samples from different times and places to infer details about the genetic makeup of M. oryzae from a global collection of isolates. Analyses of population structure identified six lineages within M. oryzae, including two pandemic on japonica and indica rice, respectively, and four lineages with more restricted distributions. Tip-dating calibration indicated that M. oryzae lineages separated about a millenium ago, long after the initial domestication of rice. The major lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and evidence of DNA acquisition from multiple lineages. Tests for weak natural selection revealed that the pandemic spread of clonal lineages entailed an evolutionary ‘cost’, in terms of the accumulation of deleterious mutations. Our findings reveal the coexistence of multiple endemic and pandemic lineages with contrasting population and genetic characteristics within a widely distributed pathogen.ImportanceThe rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae) is a textbook example of a rapidly adapting pathogen, and is responsible for one of the most damaging diseases of rice. Improvements in our understanding of Magnaporthe oryzae diversity and evolution are required, to guide the development of more effective control strategies. We used genome sequencing data for samples from around the world to infer the evolutionary history of M. oryzae. We found that M. oryzae diversified about a thousand years ago ago, separating into six main lineages: two pandemic on japonica and indica rice, respectively, and four with more restricted distributions. We also found that a lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and the acquisition of genetic material from multiple lineages. This work provides a population-level genomic framework for defining molecular markers for the control of rice blast and investigations of the molecular basis of differences in pathogenicity between M. oryzae lineages.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Meiling Liang ◽  
Shulin Zhang ◽  
Lihong Dong ◽  
Yanjun Kou ◽  
Chaoxiang Lin ◽  
...  

ABSTRACT The rice blast fungus Magnaporthe oryzae poses a great threat to global food security. During its conidiation (asexual spore formation) and appressorium (infecting structure) formation, autophagy is induced, serving glycogen breakdown or programmed cell death function, both essential for M. oryzae pathogenicity. Recently, we identified an M. oryzae histone acetyltransferase (HAT) Gcn5 as a key regulator in phototropic induction of autophagy and asexual spore formation while serving a cellular function other than autophagy induction during M. oryzae infection. To further understand the regulatory mechanism of Gcn5 on M. oryzae pathogenicity, we set out to identify more Gcn5 substrates by comparative acetylome between the wild-type (WT) and GCN5 overexpression (OX) mutant and between OX mutant and GCN5 deletion (knockout [KO]) mutant. Our results showed that Gcn5 regulates autophagy induction and other important aspects of fungal pathogenicity, including energy metabolism, stress response, cell toxicity and death, likely via both epigenetic regulation (histone acetylation) and posttranslational modification (nonhistone protein acetylation). IMPORTANCE Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen.


mSphere ◽  
2021 ◽  
Author(s):  
Chaoxiang Lin ◽  
Xue Cao ◽  
Ziwei Qu ◽  
Shulin Zhang ◽  
Naweed I. Naqvi ◽  
...  

HDACs (histone deacetylases) regulate various aspects of growth, development, and pathogenesis in plant-pathogenic fungi. Most members of HDAC classes I to III have been functionally characterized, except for orthologous Rpd3 and Hst4, in the rice blast fungus Magnaporthe oryzae .


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Zhenhui Zhong ◽  
Meilian Chen ◽  
Lianyu Lin ◽  
Ruiqi Chen ◽  
Dan Liu ◽  
...  

ABSTRACT The genomes of plant pathogens are highly variable and plastic. Pathogen gene repertoires change quickly with the plant environment, which results in a rapid loss of plant resistance shortly after the pathogen emerges in the field. Extensive studies have evaluated natural pathogen populations to understand their evolutionary effects; however, the number of studies that have examined the dynamic processes of the mutation and adaptation of plant pathogens to host plants remains limited. Here, we applied experimental evolution and high-throughput pool sequencing to Magnaporthe oryzae, a fungal pathogen that causes massive losses in rice production, to observe the evolution of genome variation. We found that mutations, including single-nucleotide variants (SNVs), insertions and deletions (indels), and transposable element (TE) insertions, accumulated very rapidly throughout the genome of M. oryzae during sequential plant inoculation and preferentially in noncoding regions, while such mutations were not frequently found in coding regions. However, we also observed that new TE insertions accumulated with time and preferentially accumulated at the proximal region of secreted protein (SP) coding genes in M. oryzae populations. Taken together, these results revealed a bias in genetic variation toward noncoding regions and SP genes in M. oryzae and may contribute to the rapid adaptive evolution of the blast fungal effectors under host selection. IMPORTANCE Plants “lose” resistance toward pathogens shortly after their widespread emergence in the field because plant pathogens mutate and adapt rapidly under resistance selection. Thus, the rapid evolution of pathogens is a serious threat to plant health. Extensive studies have evaluated natural pathogen populations to understand their evolutionary effects; however, the study of the dynamic processes of the mutation and adaptation of plant pathogens to host plants remains limited. Here, by performing an experimental evolution study, we found a bias in genetic variation toward noncoding regions and SPs in the rice blast fungus Magnaporthe oryzae, which explains the ability of the rice blast fungus to maintain high virulence variation to overcome rice resistance in the field.


2021 ◽  
pp. 103562
Author(s):  
Alice Bisola Eseola ◽  
Lauren S. Ryder ◽  
Míriam Osés-Ruiz ◽  
Kim Findlay ◽  
Xia Yan ◽  
...  

2014 ◽  
Vol 10 ◽  
pp. 251-258 ◽  
Author(s):  
Louis P Sandjo ◽  
Eckhard Thines ◽  
Till Opatz ◽  
Anja Schüffler

Four new polyketides have been identified in culture filtrates of the fungal strain Penicillium sp. IBWF104-06 isolated from a soil sample. They are structurally based on the same trans-decalinpentanoic acid skeleton as tanzawaic acids A–H. One of the new compounds was found to inhibit the conidial germination in the rice blast fungus Magnaporthe oryzae at concentrations of 25 μg/mL.


Science ◽  
2012 ◽  
Vol 336 (6088) ◽  
pp. 1590-1595 ◽  
Author(s):  
Y. F. Dagdas ◽  
K. Yoshino ◽  
G. Dagdas ◽  
L. S. Ryder ◽  
E. Bielska ◽  
...  

2017 ◽  
Author(s):  
Aleksandra Białas ◽  
Erin K. Zess ◽  
Juan Carlos De la Concepcion ◽  
Marina Franceschetti ◽  
Helen G. Pennington ◽  
...  

A diversity of plant-associated organisms secrete effectors—proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.


Sign in / Sign up

Export Citation Format

Share Document