scholarly journals Divergent Simian Arteriviruses Cause Simian Hemorrhagic Fever of Differing Severities in Macaques

mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Victoria Wahl-Jensen ◽  
Joshua C. Johnson ◽  
Michael Lauck ◽  
Jason T. Weinfurter ◽  
Louise H. Moncla ◽  
...  

ABSTRACTSimian hemorrhagic fever (SHF) is a highly lethal disease in captive macaques. Three distinct arteriviruses are known etiological agents of past SHF epizootics, but only one, simian hemorrhagic fever virus (SHFV), has been isolated in cell culture. The natural reservoir(s) of the three viruses have yet to be identified, but African nonhuman primates are suspected. Eleven additional divergent simian arteriviruses have been detected recently in diverse and apparently healthy African cercopithecid monkeys. Here, we report the successful isolation in MARC-145 cell culture of one of these viruses, Kibale red colobus virus 1 (KRCV-1), from serum of a naturally infected red colobus (Procolobus[Piliocolobus]rufomitratus tephrosceles) sampled in Kibale National Park, Uganda. Intramuscular (i.m.) injection of KRCV-1 into four cynomolgus macaques (Macaca fascicularis) resulted in a self-limiting nonlethal disease characterized by depressive behavioral changes, disturbance in coagulation parameters, and liver enzyme elevations. In contrast, i.m. injection of SHFV resulted in typical lethal SHF characterized by mild fever, lethargy, lymphoid depletion, lymphoid and hepatocellular necrosis, low platelet counts, increased liver enzyme concentrations, coagulation abnormalities, and increasing viral loads. As hypothesized based on the genetic and presumed antigenic distance between KRCV-1 and SHFV, all four macaques that had survived KRCV-1 injection died of SHF after subsequent SHFV injection, indicating a lack of protective heterotypic immunity. Our data indicate that SHF is a disease of macaques that in all likelihood can be caused by a number of distinct simian arteriviruses, although with different severity depending on the specific arterivirus involved. Consequently, we recommend that current screening procedures for SHFV in primate-holding facilities be modified to detect all known simian arteriviruses.IMPORTANCEOutbreaks of simian hemorrhagic fever (SHF) have devastated captive Asian macaque colonies in the past. SHF is caused by at least three viruses of the familyArteriviridae: simian hemorrhagic fever virus (SHFV), simian hemorrhagic encephalitis virus (SHEV), and Pebjah virus (PBJV). Nine additional distant relatives of these three viruses were recently discovered in apparently healthy African nonhuman primates. We hypothesized that all simian arteriviruses are potential causes of SHF. To test this hypothesis, we inoculated cynomolgus macaques with a highly divergent simian arterivirus (Kibale red colobus virus 1 [KRCV-1]) from a wild Ugandan red colobus. Despite being only distantly related to red colobuses, all of the macaques developed disease. In contrast to SHFV-infected animals, KRCV-1-infected animals survived after a mild disease presentation. Our study advances the understanding of an important primate disease. Furthermore, our data indicate a need to include the full diversity of simian arteriviruses in nonhuman primate SHF screening assays.

2016 ◽  
Vol 91 (4) ◽  
Author(s):  
Louise H. Moncla ◽  
Andrea M. Weiler ◽  
Gabrielle Barry ◽  
Jason T. Weinfurter ◽  
Jorge M. Dinis ◽  
...  

ABSTRACTSimian arteriviruses are a diverse clade of viruses infecting captive and wild nonhuman primates. We recently reported that Kibale red colobus virus 1 (KRCV-1) causes a mild and self-limiting disease in experimentally infected crab-eating macaques, while simian hemorrhagic fever virus (SHFV) causes lethal viral hemorrhagic fever. Here we characterize how these viruses evolved during replication in cell culture and in experimentally infected macaques. During passage in cell culture, 68 substitutions that were localized in open reading frames (ORFs) likely associated with host cell entry and exit became fixed in the KRCV-1 genome. However, we did not detect any strong signatures of selection during replication in macaques. We uncovered patterns of evolution that were distinct from those observed in surveys of wild red colobus monkeys, suggesting that these species may exert different adaptive challenges for KRCV-1. During SHFV infection, we detected signatures of selection on ORF 5a and on a small subset of sites in the genome. Overall, our data suggest that patterns of evolution differ markedly among simian arteriviruses and among host species.IMPORTANCECertain RNA viruses can cross species barriers and cause disease in new hosts. Simian arteriviruses are a diverse group of related viruses that infect captive and wild nonhuman primates, with associated disease severity ranging from apparently asymptomatic infections to severe, viral hemorrhagic fevers. We infected nonhuman primate cell cultures and then crab-eating macaques with either simian hemorrhagic fever virus (SHFV) or Kibale red colobus virus 1 (KRCV-1) and assessed within-host viral evolution. We found that KRCV-1 quickly acquired a large number of substitutions in its genome during replication in cell culture but that evolution in macaques was limited. In contrast, we detected selection focused on SHFV ORFs 5a and 5, which encode putative membrane proteins. These patterns suggest that in addition to diverse pathogenic phenotypes, these viruses may also exhibit distinct patterns of within-host evolution bothin vitroandin vivo.


1998 ◽  
Vol 72 (1) ◽  
pp. 862-867 ◽  
Author(s):  
E. K. Godeny ◽  
A. A. F. de Vries ◽  
X. C. Wang ◽  
S. L. Smith ◽  
R. J. de Groot

ABSTRACT Simian hemorrhagic fever virus (SHFV) was recently reclassified and assigned to the new virus family Arteriviridae. During replication, arteriviruses produce a 3′ coterminal, nested set of subgenomic mRNAs (sgRNAs). These sgRNAs arise by discontinuous transcription, and each contains a 5′ leader sequence which is joined to the body of the mRNA through a conserved junction sequence. Only the 5′-most open reading frame (ORF) is believed to be transcribed from each sgRNA. The SHFV genome encodes nine ORFs that are presumed to be expressed from sgRNAs. However, reverse transcription-PCR analysis with leader- and ORF-specific primers identified only eight sgRNA species. The consensus sequence 5′-UCNUUAACC-3′ was identified as the junction motif. Our data suggest that sgRNA 2 may be bicistronic, expressing both ORF 2a and ORF 2b. SHFV encodes three more ORFs on its genome than the other arteriviruses. Comparative sequence analysis suggested that SHFV ORFs 2a, 2b, and 3 are related to ORFs 2 through 4 of the other arteriviruses. Evidence which suggests that SHFV ORFs 4 through 6 are related to ORFs 2a through 3 and may have resulted from a recombination event during virus evolution is presented.


2014 ◽  
Vol 88 (16) ◽  
pp. 9129-9140 ◽  
Author(s):  
H. A. Vatter ◽  
H. Di ◽  
E. F. Donaldson ◽  
G. U. Radu ◽  
T. R. Maines ◽  
...  

1975 ◽  
Vol 150 (3) ◽  
pp. 707-711 ◽  
Author(s):  
M. D. Trousdale ◽  
D. W. Trent ◽  
A. Shelokov

2018 ◽  
Author(s):  
Joseph P. Cornish ◽  
Ian N. Moore ◽  
Donna L. Perry ◽  
Abigail Lara ◽  
Mahnaz Minai ◽  
...  

ABSTRACTSimian hemorrhagic fever virus (SHFV) causes a fulminant and typically lethal viral hemorrhagic fever (VHF) in macaques (Cercopithecinae: Macaca spp.) but causes subclinical infections in patas monkeys (Cercopithecinae: Erythrocebus patas). This difference in disease course offers a unique opportunity to compare host-responses to infection by a VHF-causing virus in biologically similar susceptible and refractory animals. Patas and rhesus monkeys were inoculated side-by-side with SHFV. In contrast to the severe disease observed in rhesus monkeys, patas monkeys developed a limited clinical disease characterized by changes in complete blood counts, serum chemistries, and development of lymphadenopathy. Viremia was measurable 2 days after exposure and its duration varied by species. Infectious virus was detected in terminal tissues of both patas and rhesus monkeys. Varying degrees of overlap in changes in serum concentrations of IFN-γ, MCP-1, and IL-6 were observed between patas and rhesus monkeys, suggesting the presence of common and species-specific cytokine responses to infection. Similarly, quantitative immunohistochemistry of terminal livers and whole blood flow cytometry revealed varying degrees of overlap in changes in macrophages, natural killer cells, and T-cells. The unexpected degree of overlap in host-response suggests that relatively small subsets of a host’s response to infection may be responsible for driving pathogenesis that results in a hemorrhagic fever. Furthermore, comparative SHFV infection in patas and rhesus monkeys offers an experimental model to characterize host-response mechanisms associated with viral hemorrhagic fever and evaluate pan-viral hemorrhagic fever countermeasures.IMPORTANCEHost-response mechanisms involved in pathogenesis of VHFs remain poorly understood. An underlying challenge is separating beneficial, inconsequential, and detrimental host-responses during infection. The comparison of host-responses to infection with the same virus in biologically similar animals that have drastically different disease manifestations allows for the identification of pathogenic mechanisms. SHFV, a surrogate virus for human VHF-causing viruses likely causes subclinical infection in African monkeys such as patas monkeys but can cause severe disease in Asian macaque monkeys. Data from the accompanying article by Buechler et al. support that infection of macaques and baboons with non-SHFV simarteviruses can establish persistent or long-term subclinical infections. Baboons, macaques, and patas monkeys are relatively closely taxonomically related (Cercopithecidae: Cercopithecinae) and therefore offer a unique opportunity to dissect how host-response differences determine disease outcome in VHFs.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Joseph Cornish ◽  
Ian Moore ◽  
Donna Perry ◽  
Abigail Lara ◽  
Mahnaz Minai ◽  
...  

Simian hemorrhagic fever virus (SHFV) causes a fulminant and typically lethal viral hemorrhagic fever (VHF) in macaques (Cercopithecinae: Macaca spp.) but causes subclinical infections in patas monkeys (Cercopithecinae: Erythrocebus patas). This difference in disease course offers a unique opportunity to compare host responses to infection by a VHF-causing virus in biologically similar susceptible and refractory animals. Patas and rhesus monkeys were inoculated side-by-side with SHFV. Unlike the severe disease observed in rhesus monkeys, patas monkeys developed a limited clinical disease characterized by changes in complete blood counts, serum chemistries, and development of lymphadenopathy. Viral RNA was measurable in circulating blood 2 days after exposure, and its duration varied by species. Infectious virus was detected in terminal tissues of both patas and rhesus monkeys. Varying degrees of overlap in changes in serum concentrations of interferon (IFN)-γ, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 were observed between patas and rhesus monkeys, suggesting the presence of common and species-specific cytokine responses to infection. Similarly, quantitative immunohistochemistry of livers from terminal monkeys and whole blood flow cytometry revealed varying degrees of overlap in changes in macrophages, natural killer cells, and T-cells. The unexpected degree of overlap in host response suggests that relatively small subsets of a host’s response to infection may be responsible for driving hemorrhagic fever pathogenesis. Furthermore, comparative SHFV infection in patas and rhesus monkeys offers an experimental model to characterize host–response mechanisms associated with viral hemorrhagic fever and evaluate pan-viral hemorrhagic fever countermeasures.


2020 ◽  
Vol 181 ◽  
pp. 104858 ◽  
Author(s):  
David W. Hawman ◽  
Elaine Haddock ◽  
Kimberly Meade-White ◽  
Glenn Nardone ◽  
Friederike Feldmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document