scholarly journals A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea gigas

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Maxime Lafont ◽  
Agnès Vergnes ◽  
Jeremie Vidal-Dupiol ◽  
Julien de Lorgeril ◽  
Yannick Gueguen ◽  
...  

ABSTRACT Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas. Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide. IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates.

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Nelson E. Martins

ABSTRACT Viral diseases cause significant losses in aquaculture. Prophylactic measures, such as immune priming, are promising control strategies. Treatment of the Pacific oyster (Crassostrea gigas) with the double-stranded RNA analog poly(I·C) confers long-term protection against infection with ostreid herpesvirus 1, the causative agent of Pacific oyster mortality syndrome. In a recent article in mBio, Lafont and coauthors (M. Lafont, A. Vergnes, J. Vidal-Dupiol, J. de Lorgeril, et al., mBio 11:e02777-19, 2020, https://doi.org/10.1128/mBio.02777-19) characterized the transcriptome of oysters treated with poly(I·C). This immune stimulator induced genes related to the interferon and apoptosis pathways. This response overlaps the response to viral infection, and high expression levels of potential effector genes are maintained for up to 4 months. This work opens the door to characterization of the phenomena of immune priming in a poorly studied invertebrate model. It also highlights the importance of interferon-like responses for invertebrate antiviral immunity.


2019 ◽  
Vol 93 ◽  
pp. 551-558 ◽  
Author(s):  
Baoyu Huang ◽  
Xueying Tang ◽  
Linlin Zhang ◽  
Li Li ◽  
Wei Wang ◽  
...  

2014 ◽  
Vol 80 (17) ◽  
pp. 5419-5426 ◽  
Author(s):  
Tristan Renault ◽  
Anne Lise Bouquet ◽  
Julien-Thomas Maurice ◽  
Coralie Lupo ◽  
Philippe Blachier

ABSTRACTA number of bivalve species worldwide, including the Pacific oyster,Crassostrea gigas, have been affected by mass mortality events associated with herpesviruses, resulting in significant losses. A particular herpesvirus was purified from naturally infected larval Pacific oysters, and its genome was completely sequenced. This virus has been classified asOstreid herpesvirus 1(OsHV-1) within the familyMalacoherpesviridae. Since 2008, mass mortality outbreaks amongC. gigasin Europe have been related to the detection of a variant of OsHV-1 called μVar. Additional data are necessary to better describe mortality events in relation to environmental-parameter fluctuations and OsHV-1 detection. For this purpose, a single batch of Pacific oyster spat was deployed in 4 different locations in the Marennes-Oleron area (France): an oyster pond (“claire”), a shellfish nursery, and two locations in the field. Mortality rates were recorded based on regular observation, and samples were collected to search for and quantify OsHV-1 DNA by real-time PCR. Although similar massive mortality rates were reported at the 4 sites, mortality was detected earlier in the pond and in the nursery than at both field sites. This difference may be related to earlier increases in water temperature. Mass mortality was observed among oysters a few days after increases in the number of PCR-positive oysters and viral-DNA amounts were recorded. An initial increment in the number of PCR-positive oysters was reported at both field sites during the survey in the absence of significant mortality. During this period, the water temperature was below 16°C.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Maxime Lafont ◽  
Bruno Petton ◽  
Agnès Vergnes ◽  
Marianna Pauletto ◽  
Amélie Segarra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document