scholarly journals Trade-off between Plasticity and Velocity in Mycelial Growth

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Sayumi Fukuda ◽  
Riho Yamamoto ◽  
Naoki Yanagisawa ◽  
Naoki Takaya ◽  
Yoshikatsu Sato ◽  
...  

ABSTRACT Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. However, it remains unclear how both features act cooperatively to determine cell shape. Here, we investigated this relationship by analyzing hyphal tip growth of filamentous fungi growing inside extremely narrow 1 μm-width channels of microfluidic devices. Since the channels are much narrower than the diameter of hyphae, any hypha growing through the channel must adapt its morphology. Live-cell imaging analyses revealed that hyphae of some species continued growing through the channels, whereas hyphae of other species often ceased growing when passing through the channels, or had lost apical polarity after emerging from the other end of the channel. Fluorescence live-cell imaging analyses of the Spitzenkörper, a collection of secretory vesicles and polarity-related proteins at the hyphal tip, in Neurospora crassa indicates that hyphal tip growth requires a very delicate balance of ordered exocytosis to maintain polarity in spatially confined environments. We analyzed the mycelial growth of seven fungal species from different lineages, including phytopathogenic fungi. This comparative approach revealed that the growth defects induced by the channels were not correlated with their taxonomic classification or with the width of hyphae, but, rather, correlated with the hyphal elongation rate. This report indicates a trade-off between morphological plasticity and velocity in mycelial growth and serves to help understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology, and pathogenicity. IMPORTANCE Cell morphology, which is controlled by polarity and growth, is fundamental for all cellular functions. However how polarity and growth act cooperatively to control cell shape remains unclear. Here we investigated their relationship by analyzing hyphal tip growth of filamentous fungi growing inside extremely narrow 1 μm-width channels of microfluidic devices. We found that most fast growing hyphae often lost the cell polarity after emerging from the channels, whereas slow growing hyphae retained polarity and continued growing, indicating a trade-off between plasticity and velocity in mycelial growth. These results serve to understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology and pathogenicity.

Author(s):  
Sayumi Fukuda ◽  
Riho Yamamoto ◽  
Naoki Yanagisawa ◽  
Naoki Takaya ◽  
Yoshikatsu Sato ◽  
...  

AbstractTip-growing fungal cells maintain the cell polarity at the apical regions and elongate by de novo synthesis of cell wall. Cell polarity and growth rate affect the mycelial morphogenesis, however, it remains unclear how they act cooperatively to determine cell shape. Here we investigated their relationship by analyzing hyphal tip growth of filamentous fungi growing inside extremely narrow 1 μm-width channels of microfluidic devices. Since the channels are much narrower than the diameter of hyphae, the hyphae must change its morphology when they grow through the channels. Live imaging analysis revealed that hyphae of some species continued growing through the channels, whereas hyphae of other species often ceased growing when passing through the channels or lost the cell polarity after emerging from the channels. Fluorescence live imaging analysis of the Spitzenkörper, a collection of secretory vesicles and polarity-related proteins at hyphal tips, in Neurospora crassa hyphae indicates that hyphal tip growth requires a very delicate balance of ordered exocytosis to maintain polarity in spatially confined environments. We analyzed the mycelial growth of seven fungal species from different lineages, which also include phytopathogenic fungi. This comparative cell biology showed that the growth defects in the channels were not correlated with their taxonomic classification nor with the width of hyphae, but, correlated with the hyphal elongation rate. This is the first report indicating a trade-off between plasticity and velocity in mycelial growth, and serves to understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology and pathogenicity.


2020 ◽  
Vol 16 (1) ◽  
pp. 58-63
Author(s):  
Amrutha Vijayakumar ◽  
Ajith Madhavan ◽  
Chinchu Bose ◽  
Pandurangan Nanjan ◽  
Sindhu S. Kokkal ◽  
...  

Background: Chitin is the main component of fungal, protozoan and helminth cell wall. They help to maintain the structural and functional characteristics of these organisms. The chitin wall is dynamic and is repaired, rearranged and synthesized as the cells develop. Active synthesis can be noticed during cytokinesis, laying of primary septum, maintenance of lateral cell wall integrity and hyphal tip growth. Chitin synthesis involves coordinated action of two enzymes namely, chitin synthase (that lays new cell wall) and chitinase (that removes the older ones). Since chitin synthase is conserved in different eukaryotic microorganisms that can be a ‘soft target’ for inhibition with small molecules. When chitin synthase is inhibited, it leads to the loss of viability of cells owing to the self- disruption of the cell wall by existing chitinase. Methods: In the described study, small molecules from plant sources were screened for their ability to interfere with hyphal tip growth, by employing Hyphal Tip Burst assay (HTB). Aspergillus niger was used as the model organism. The specific role of these small molecules in interfering with chitin synthesis was established with an in-vitro method. The enzyme required was isolated from Aspergillus niger and its activity was deduced through a novel method involving non-radioactively labelled substrate. The activity of the potential lead molecules were also checked against Candida albicans and Caenorhabditis elegans. The latter was adopted as a surrogate for the pathogenic helminths as it shares similarity with regard to cell wall structure and biochemistry. Moreover, it is widely studied and the methodologies are well established. Results: Out of the 11 compounds and extracts screened, 8 were found to be prospective. They were also found to be effective against Candida albicans and Caenorhabditis elegans. Conclusion: Purified Methyl Ethyl Ketone (MEK) Fraction1 (F1) of Coconut (Cocos nucifera) Shell Extract (COSE) was found to be more effective against Candida albicans with an IC50 value of 3.04 μg/mL and on L4 stage of Caenorhabditis elegans with an IC50 of 77.8 μg/mL.


2007 ◽  
Vol 75 (3) ◽  
Author(s):  
K. E. P. Sugden ◽  
M. R. Evans ◽  
W. C. K. Poon ◽  
N. D. Read

2004 ◽  
Vol 10 (S02) ◽  
pp. 1554-1555
Author(s):  
Maho Uchida ◽  
Solomon Bartnicki-García ◽  
Robert W. Roberson

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


1972 ◽  
Vol 50 (12) ◽  
pp. 2455-2462 ◽  
Author(s):  
Daniela da Riva Ricci ◽  
Bryce Kendrick

Starting from simple morphological considerations and a hypothesis involving 'unset' and 'set' wall, a mathematical model simulating the growth of the hyphal tip is derived, and the results displayed by plotter.


2016 ◽  
Vol 22 (2) ◽  
pp. 264-274 ◽  
Author(s):  
Zachary Schultzhaus ◽  
Laura Quintanilla ◽  
Angelyn Hilton ◽  
Brian D. Shaw

AbstractHyphal cells of filamentous fungi grow at their tips in a method analogous to pollen tube and root hair elongation. This process, generally referred to as tip growth, requires precise regulation of the actin cytoskeleton, and characterizing the various actin structures in these cell types is currently an active area of research. Here, the actin marker Lifeact was used to document actin dynamics in the filamentous fungus Aspergillus nidulans. Contractile double rings were observed at septa, and annular clusters of puncta were seen subtending growing hyphal tips, corresponding to the well-characterized subapical endocytic collar. However, Lifeact also revealed two additional structures. One, an apical array, was dynamic on the face opposite the tip, while a subapical web was dynamic on the apical face and was located several microns behind the growth site. Each was observed turning into the other over time, implying that they could represent different localizations of the same structure, although hyphae with a subapical web grew faster than those exhibiting an apical array. The subapical web has not been documented in any filamentous fungus to date, and is separate from the networks of F-actin seen in other tip-growing organisms surrounding septa or stationary along the plasmalemma.


2011 ◽  
Vol 166 (3) ◽  
pp. 137-145 ◽  
Author(s):  
Sigyn Jorde ◽  
Andrea Walther ◽  
Jürgen Wendland

Sign in / Sign up

Export Citation Format

Share Document