scholarly journals CTCF Regulates Allelic Expression of Igf2 by Orchestrating a Promoter-Polycomb Repressive Complex 2 Intrachromosomal Loop

2008 ◽  
Vol 28 (20) ◽  
pp. 6473-6482 ◽  
Author(s):  
Tao Li ◽  
Ji-Fan Hu ◽  
Xinwen Qiu ◽  
Jianqun Ling ◽  
Huiling Chen ◽  
...  

ABSTRACT CTCF is a zinc finger DNA-binding protein that regulates the epigenetic states of numerous target genes. Using allelic regulation of mouse insulin-like growth factor II (Igf2) as a model, we demonstrate that CTCF binds to the unmethylated maternal allele of the imprinting control region (ICR) in the Igf2/H19 imprinting domain and forms a long-range intrachromosomal loop to interact with the three clustered Igf2 promoters. Polycomb repressive complex 2 is recruited through the interaction of CTCF with Suz12, leading to allele-specific methylation at lysine 27 of histone H3 (H3-K27) and to suppression of the maternal Igf2 promoters. Targeted mutation or deletion of the maternal ICR abolishes this chromatin loop, decreases allelic H3-K27 methylation, and causes loss of Igf2 imprinting. RNA interference knockdown of Suz12 also leads to reactivation of the maternal Igf2 allele and biallelic Igf2 expression. CTCF and Suz12 are coprecipitated from nuclear extracts with antibodies specific for either protein, and they interact with each other in a two-hybrid system. These findings offer insight into general epigenetic mechanisms by which CTCF governs gene expression by orchestrating chromatin loop structures and by serving as a DNA-binding protein scaffold to recruit and bind polycomb repressive complexes.

1989 ◽  
Vol 9 (3) ◽  
pp. 1351-1356 ◽  
Author(s):  
D L Zhang ◽  
K C Ehrlich ◽  
P C Supakar ◽  
M Ehrlich

A novel, 5-methylcytosine-specific, DNA-binding protein, DBP-m, has been identified in nuclear extracts of peas. DBP-m specifically recognizes 5-methylcytosine residues in DNA without appreciable DNA sequence specificity, unlike a mammalian DNA-binding protein (MDBP), which recognizes 5-methylcytosine residues but only in a related family of 14-base-pair sequences.


2013 ◽  
Vol 94 (6) ◽  
pp. 1325-1334 ◽  
Author(s):  
Yadvinder S. Ahi ◽  
Sai V. Vemula ◽  
Suresh K. Mittal

Adenovirus (AdV) is thought to follow a sequential assembly pathway similar to that observed in dsDNA bacteriophages and herpesviruses. First, empty capsids are assembled, and then the genome is packaged through a ring-like structure, referred to as a portal, located at a unique vertex. In human AdV serotype 5 (HAdV5), the IVa2 protein initiates specific recognition of viral genome by associating with the viral packaging domain located between nucleotides 220 and 400 of the genome. IVa2 is located at a unique vertex on mature capsids and plays an essential role during genome packaging, most likely by acting as a DNA packaging ATPase. In this study, we demonstrated interactions among IVa2, 33K and DNA-binding protein (DBP) in virus-infected cells by in vivo cross-linking of HAdV5-infected cells followed by Western blot, and co-immunoprecipitation of IVa2, 33K and DBP from nuclear extracts of HAdV5-infected cells. Confocal microscopy demonstrated co-localization of IVa2, 33K and DBP in virus-infected cells and also in cells transfected with IVa2, 33K and DBP genes. Immunogold electron microscopy of purified HAdV5 showed the presence of IVa2, 33K or DBP at a single site on the virus particles. Our results provide indirect evidence that IVa2, 33K and DBP may form a complex at a unique vertex on viral capsids and cooperate in genome packaging.


1989 ◽  
Vol 9 (3) ◽  
pp. 1351-1356
Author(s):  
D L Zhang ◽  
K C Ehrlich ◽  
P C Supakar ◽  
M Ehrlich

A novel, 5-methylcytosine-specific, DNA-binding protein, DBP-m, has been identified in nuclear extracts of peas. DBP-m specifically recognizes 5-methylcytosine residues in DNA without appreciable DNA sequence specificity, unlike a mammalian DNA-binding protein (MDBP), which recognizes 5-methylcytosine residues but only in a related family of 14-base-pair sequences.


2010 ◽  
Vol 222 (03) ◽  
Author(s):  
S Degen ◽  
S Kuhfittig-Kulle ◽  
JH Schulte ◽  
F Westermann ◽  
A Schramm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document