targeted mutation
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 48)

H-INDEX

64
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Marcel Llavero-Pasquina ◽  
Katrin Geisler ◽  
Andre Holzer ◽  
Payam Mehrshahi ◽  
Gonzalo I Mendoza-Ochoa ◽  
...  

Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for approximately 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and the targeted mutation of the TPP aptamer in the HMP-P synthase (THIC) does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtSSSP is necessary for thiamine uptake and that PtTHIC is essential for thiamine biosynthesis. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.


2021 ◽  
Author(s):  
Jagraj S. Brar ◽  
Rahul Verma ◽  
Mohammed Al-Omari ◽  
Victoria M. Siu ◽  
Andrea V. Andrade ◽  
...  

AbstractStroke in infancy is a rare phenomenon but can lead to significant long-term disability. We present the story of a 6-month-old Old Order Amish infant with underlying Williams syndrome, a rare neurodevelopmental disorder caused by a microdeletion, encompassing the elastin gene that produces abnormalities in elastic fibers of the lungs and vessels. This infant presented with lethargy, irritability, and a new-onset generalized tonic-clonic seizure. Brain magnetic resonance imaging (MRI) was consistent with ischemic stroke in the supratentorial regions. MR angiogram demonstrated bilateral narrowing of the internal carotid arteries with “ivy sign,” suggestive of Moyamoya. Moyamoya disease/syndrome is a cerebrovascular condition that is associated with progressive stenosis of the intracranial vessels and can cause ischemic stroke in young children. Targeted mutation analysis revealed a homozygous c.1411–2A > G splice site variant in the SAMHD1 gene, consistent with a diagnosis of Aicardi–Goutières syndrome type 5 (AGS5), an autosomal recessive condition with multisystem involvement. In our unique case of infantile stroke with Moyamoya syndrome and dual diagnosis of Williams syndrome and AGS5, both diagnoses likely contributed to the cerebrovascular pathology. This case report highlights the importance of suspecting and testing for multiple genetic abnormalities in children presenting with Moyamoya-related stroke.


2021 ◽  
Author(s):  
Krishnagowdu Saravanan ◽  
Kumar Praveenkumar ◽  
Nandakumar Vidya ◽  
Kumaraguru Gowtham ◽  
Mohanasundaram Saravanan

Horticultural crops are indispensable agricultural food materials with all essential nutrients. Though, severe threats like pests, diseases, and adverse abiotic factors will affect their productivity and quality. This permits to promote sustainable agriculture by utilizing the recent biotechnological approach to tackle the mentioned issues. In recent year’s genome editing technologies has become one of the most executed genetic tools which altered plant molecular biology. Recently, CRISPR-Cas utilizes for its high target specificity, easier design, and higher success rate. This chapter deals with recent advances in CRISPR/Cas9 technology in horticultural crops in response to the enrichment of essential metabolites, which was achieved by introducing the viral genome to the host via CRISPR-mediated targeted mutation. Furthermore, the strategies based on CRISPR/Cas9 targeted modifications of genes in crop species such as rice, wheat, and soy will be discussed. Finally, we discuss the challenges, improvements, and prospective applications of this cutting-edge technology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kevin T. Booth ◽  
Yoel Hirsch ◽  
Anna C. Vardaro ◽  
Josef Ekstein ◽  
Devorah Yefet ◽  
...  

Hearing loss is a genetically and phenotypically heterogeneous disorder. The purpose of this study was to determine the genetic cause underlying hearing loss in four Ashkenazi Jewish families. We screened probands from each family using a combination of targeted mutation screening and exome sequencing to identifiy the genetic cause of hearing loss in each family. We identified four variants in MYO15A, two novel variants never previously linked to deafness (c.7212+5G>A and p.Leu2532ArgfsTer37) and two recurrent variants (p.Tyr2684His and p.Gly3287Gly). One family showed locus heterogeneity, segregrating two genetic forms of hearing loss. Mini-gene assays revealed the c.7212+5G>A variant results in abnormal splicing and is most likely a null allele. We show that families segregrating the p.Gly3287Gly variant show both inter and intra-familial phenotypic differences. These results add to the list of MYO15A deafness-causing variants, further confirm the pathogenicity of the p.Gly3287Gly variant and shed further light on the genetic etiology of hearing loss in the Ashkenazi Jewish population.


2021 ◽  
Author(s):  
Kelvin GK Goh ◽  
Matthew J Sullivan ◽  
Glen C Ulett

In bacteria, copper (Cu) can support metabolic processes as an enzymatic cofactor but can also cause cell damage if present in excess, leading to intoxication. In group B Streptococcus (GBS) a system for control of Cu efflux based on the canonical cop operon supports survival during Cu stress. In some other bacteria, genetic systems additional to the cop operon are engaged during Cu stress and also contribute to Cu management. Here, we examined genetic systems beyond the cop operon in GBS for regions that contribute to survival of GBS in Cu stress using a forward genetic screen and probe of the entire bacterial genome. A high-density mutant library, generated using pGh9-ISS1, was used to expose GBS to Cu stress and compared to non-exposed controls en masse. Nine genes were identified as essential for GBS survival in Cu stress, whereas five genes constrained GBS growth in Cu stress. The genes encode varied factors including enzymes for metabolism, cell wall synthesis, transporters and global transcriptional regulators. Targeted mutation of the genes validated their roles in GBS resistance to Cu stress. Notably, several genes, including stp1, yceG, plyB and rfaB were also essential for resistance to Zn stress. Excepting copA, the genes identified are new to the area of bacterial metal ion intoxication. We conclude that a discrete and limited suite of genes beyond the cop operon in GBS contribute to a repertoire of mechanisms used to survive Cu stress in vitro and achieve cellular homeostasis.


2021 ◽  
Author(s):  
Morag A Lewis ◽  
Neil A Ingham ◽  
Jing Chen ◽  
Selina Pearson ◽  
Francesca Di Domenico ◽  
...  

Mice carrying targeted mutations are important for investigating gene function and the role of genes in disease, but the process of culturing embryonic stem cells during the making of a targeted allele offers opportunities for spontaneous mutations to arise. Identifying spontaneous mutations relies on the detection of phenotypes segregating independently of targeted alleles, and many phenotypes are easy to miss if not specifically looked for. Here we present data from a large, targeted knockout programme in which mice were analysed through a phenotyping pipeline. Twenty-five lines out of 1311 displayed different deafness phenotypes that did not segregate with the targeted allele. We have identified 8 different mutations causing deafness in 16 of these 25 lines and characterised the resulting phenotypes. Our data show that spontaneous mutations with observable effects on phenotype are a common side effect of intensive breeding programmes, including those underlying targeted mutation programmes.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009662
Author(s):  
Nicolás Sarute ◽  
Han Cheng ◽  
Zhonghao Yan ◽  
Karen Salas-Briceno ◽  
Justin Richner ◽  
...  

Signal-regulatory protein alpha (SIRPA) is a well-known inhibitor of phagocytosis when it complexes with CD47 expressed on target cells. Here we show that SIRPA decreased in vitro infection by a number of pathogenic viruses, including New World and Old world arenaviruses, Zika virus, vesicular stomatitis virus and pseudoviruses bearing the Machupo virus, Ebola virus and SARS-CoV-2 glycoproteins, but not HSV-1, MLV or mNoV. Moreover, mice with targeted mutation of the Sirpa gene that renders it non-functional were more susceptible to infection with the New World arenaviruses Junín virus vaccine strain Candid 1 and Tacaribe virus, but not MLV or mNoV. All SIRPA-inhibited viruses have in common the requirement for trafficking to a low pH endosomal compartment. This was clearly demonstrated with SARS-CoV-2 pseudovirus, which was only inhibited by SIRPA in cells in which it required trafficking to the endosome. Similar to its role in phagocytosis inhibition, SIRPA decreased virus internalization but not binding to cell surface receptors. We also found that increasing SIRPA levels via treatment with IL-4 led to even greater anti-viral activity. These data suggest that enhancing SIRPA’s activity could be a target for anti-viral therapies.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bin Zhang ◽  
Xiaojing Xu ◽  
Renwei Huang ◽  
Sha Yang ◽  
Mingyang Li ◽  
...  

AbstractVenation is a common anthocyanin pattern displayed in flowers that confers important ornamental traits to plants. An anthocyanin-related R2R3-MYB transcription factor, DPL, has been proposed to regulate corolla tube venation in petunia plants. Here, however, we provide evidence redefining the role of DPL in petunia. A CRISPR/Cas9-mediated mutation of DPL resulted in the absence of the vein-associated anthocyanin pattern above the abaxial surface of the flower bud, but not corolla tube venation, thus indicating that DPL did not regulate the formation of corolla tube venation. Alternately, quantitative real-time PCR analysis demonstrated that the spatiotemporal expression pattern of another R2R3-MYB gene, AN4, coincided with the formation of corolla tube venation in petunia. Furthermore, overexpression of AN4 promoted anthocyanin accumulation by increasing the expression of anthocyanin biosynthesis genes. CRISPR/Cas9-mediated mutation of AN4 led to an absence of corolla tube venation, suggesting that this gene in fact determines this key plant trait. Taken together, the results presented here redefine the prime regulator of corolla tube venation, paving the way for further studies on the molecular mechanisms underlying the various venation patterns in petunia.


Plant Direct ◽  
2021 ◽  
Vol 5 (6) ◽  
Author(s):  
Jenna E. Reeger ◽  
Matthew Wheatley ◽  
Yinong Yang ◽  
Kathleen M. Brown

2021 ◽  
Author(s):  
Wellington dos Santos ◽  
Mariana Bisarro dos Reis ◽  
Jun Porto ◽  
Ana Carolina de Carvalho ◽  
Marcus Matsushita ◽  
...  

Abstract Most colorectal cancers (CRC) arise from precursor lesions. We aimed to characterize the mutation profile of CRC precursor lesions in a Brazilian population. In total, 90 FFPE lesions, including 67 adenomas, 7 sessile serrated lesions, and 16 hyperplastic polyps, were analyzed by next-generation sequencing. The genetic ancestry of the patients was estimated. Somatic driver mutations were identified in 66.7% of cases, including alterations in APC (32.2%), TP53 (20.0%), KRAS (18.9%), BRAF (13.3%) and EGFR (7.8%). Adenomas displayed a higher number of mutations, mainly in APC, compared to serrated polyps (73.1% vs. 47.8%, p = 0.039). Advanced adenomas had a higher frequency of mutation in KRAS and GNAS and a high overall mutation rate than early adenomas (92.9% vs. 59%, p = 0.002). Concerning the serrated pathway, a higher frequency of mutations, mainly in BRAF, was observed in sessile serrated lesions (85.7%) compared to hyperplastic polyps (31.3%, p = 0.027). A high degree of ancestry admixture was observed in the population, with a predominance of European followed by African components. The mutation profile of Brazilian colorectal precursor lesions exhibits a similar landscape to other populations. These results bestow the knowledge of CRC's biological history and may contribute to a molecular screening approach.


Sign in / Sign up

Export Citation Format

Share Document