scholarly journals Mind bomb-1 Is Essential for Intraembryonic Hematopoiesis in the Aortic Endothelium and the Subaortic Patches

2008 ◽  
Vol 28 (15) ◽  
pp. 4794-4804 ◽  
Author(s):  
Mi-Jeong Yoon ◽  
Bon-Kyoung Koo ◽  
Ran Song ◽  
Hyun-Woo Jeong ◽  
Juhee Shin ◽  
...  

ABSTRACT Intraembryonic hematopoiesis occurs at two different sites, the floor of the aorta and subaortic patches (SAPs) of the para-aortic splanchnopleura (P-Sp)/aorta-gonad-mesonephros (AGM) region. Notch1 and RBP-jκ are critical for the specification of hematopoietic stem cells (HSCs) in Notch signal-receiving cells. However, the mechanism by which Notch signaling is triggered from the Notch signal-sending cells to support embryonic hematopoiesis remains to be determined. We previously reported that Mind bomb-1 (Mib1) regulates Notch ligands in the Notch signal-sending cells (B. K. Koo, M. J. Yoon, K. J. Yoon, S. K. Im, Y. Y. Kim, C. H. Kim, P. G. Suh, Y. N. Jan, and Y. Y. Kong, PLoS ONE 2:e1221, 2007). Here, we show that intraembryonic hematopoietic progenitors were absent in the P-Sp of Mib1 −/− embryos, whereas they were partly preserved in the Tie2-cre; Mib1 f /f P-Sps, suggesting that Mib1 plays a role in the endothelium and the SAPs. Interestingly, dll1 and dll4/Jag1 are expressed in the SAPs and the endothelium of the AGM, respectively, where mib1 is detected. Indeed, Notch signaling was activated in the nascent HSCs at both sites. In the P-Sp explant culture, the overexpression of Dll1 in OP9 stromal cells rescued the failed production of hematopoietic progenitors in the Mib1 −/− P-Sp, while its activity was abolished by Mib1 knockdown. These results suggest that Mib1 is important for intraembryonic hematopoiesis not only in the aortic endothelium but also in the SAPs.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2616-2616
Author(s):  
Wilson K. Clements ◽  
Karen G. Ong ◽  
Albert D. Kim ◽  
David Traver

Abstract Abstract 2616 Hematopoietic stem cells (HSCs) are self-renewing progenitor cells that provide all adult blood lineages over the lifetime of an individual. Understanding the signaling events that regulate specification of these cells during embryonic development is a key precondition to recapitulating those processes in vitro for the purposes of regenerative medicine. Here we report that non-canonical Wnt signaling by the conserved vertebrate ligand, Wnt16 is required for specification of HSCs in zebrafish. WNT16 was originally identified as a gene aberrantly expressed in pre-B acute lymphoblastic leukemia (ALL) cells containing the t(1;19) chromosomal translocation, leading to expression of E2A-PBX1. Wnt16 is expressed in mammals at times when hemogenic endothelial cells first appear in the dorsal aorta. In zebrafish, wnt16 is expressed in somites, which lie adjacent to the dorsal aorta. Knock down of Wnt16 function by injection of antisense morpholino oligonucleotides leads to loss of HSCs and definitive blood lineages, such as T-cells, during development. Non-blood tissues including vasculature appear largely unaffected. Thus, wnt16 is required for HSC specification. To better understand the Wnt16 signal transduction pathway, we examined its ability to activate transcription of target genes through β-catenin/Tcf-dependent “canonical” signaling. Although Wnt16 overexpression causes morphological abnormality, it does not yield ectopic expression of endogenous or transgenic canonical reporter genes at time points relevant to blood specification. Thus, Wnt16 signals independently of β-catenin/Tcf through a “non-canonical” Wnt pathway. Notch signaling is required for specification of HSCs across phyla. To determine whether Notch signaling is disrupted in Wnt16 morphants, we examined the expression of all Notch ligands and receptors in these animals and found that expression of two ligands, deltaC (dlc) and deltaD (dld) are decreased. Zebrafish mutants, homozygous for a null allele of dlc, and embryos injected with a dld morpholino each display decreased numbers of HSCs during development, but recover. Dlc mutants injected with dld morpholino show complete loss of HSCs. To determine whether defects in Notch signaling are responsible for loss of HSCs in Wnt16 morphants, we performed a rescue experiment. Transgenic animals carrying an inducible dominant activator of Notch target genes were injected with Wnt16 morpholino, and Notch activity was either induced or not. Wnt16 morphants with enforced Notch activity recovered HSC marker expression. Taken together, our results indicate that Wnt16 regulates expression of the Notch ligands dlc and dld, and these are redundantly required for HSC specification during development. Chimera experiments in mouse using wild type and Notch1-deficient cells indicate that there is a cell-autonomous requirement for Notch signaling in specification of HSCs. To determine when the first Notch-responsive cells that contribute to the adult hematopoietic system appear, we used animals carrying a transgene encoding a photconvertible, green-to-red Kaede protein under the control of a Notch-responsive promoter. By photoconverting all embryonic cells at various times during development, we determined that cells destined to become HSCs first experience a Notch signal at approximately the time when HSCs first appear, just before 24 hours post fertilization (hpf). At earlier time points, Notch responsive cells were present, but did not contribute to blood, although they did contribute to tissues in or near the dorsal aorta, which contains the hemogenic endothelium that gives rise to HSCs. Surprisingly, HSC rescue in Wnt16 morphants by Notch activation could only be achieved earlier than 16 hpf, long before a cell-autonomous Notch signal is received in pre-HSCs. Moreover, loss of the critical ligands, dlc and dld, in Wnt16 morphant animals was confined to somitic tissue prior to 20 hpf, while ligand expression in or near the dorsal aorta at later times was relatively normal. Together, our results strongly suggest a previously unappreciated, non-cell-autonomous requirement for Notch signaling in the somites. We hypothesize that somitic Notch signaling regulates a morphological process or expression of a relay signal required for HSC specification during development. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 15 (3) ◽  
pp. 250-262
Author(s):  
Maryam Islami ◽  
Fatemeh Soleimanifar

Transplantation of hematopoietic stem cells (HSCs) derived from umbilical cord blood (UCB) has been taken into account as a therapeutic approach in patients with hematologic malignancies. Unfortunately, there are limitations concerning HSC transplantation (HSCT), including (a) low contents of UCB-HSCs in a single unit of UCB and (b) defects in UCB-HSC homing to their niche. Therefore, delays are observed in hematopoietic and immunologic recovery and homing. Among numerous strategies proposed, ex vivo expansion of UCB-HSCs to enhance UCB-HSC dose without any differentiation into mature cells is known as an efficient procedure that is able to alter clinical treatments through adjusting transplantation-related results and making them available. Accordingly, culture type, cytokine combinations, O2 level, co-culture with mesenchymal stromal cells (MSCs), as well as gene manipulation of UCB-HSCs can have effects on their expansion and growth. Besides, defects in homing can be resolved by exposing UCB-HSCs to compounds aimed at improving homing. Fucosylation of HSCs before expansion, CXCR4-SDF-1 axis partnership and homing gene involvement are among strategies that all depend on efficiency, reasonable costs, and confirmation of clinical trials. In general, the present study reviewed factors improving the expansion and homing of UCB-HSCs aimed at advancing hematopoietic recovery and expansion in clinical applications and future directions.


Author(s):  
Valentina Orticelli ◽  
Andrea Papait ◽  
Elsa Vertua ◽  
Patrizia Bonassi Signoroni ◽  
Pietro Romele ◽  
...  

2017 ◽  
Vol 51 ◽  
pp. 1-6.e2 ◽  
Author(s):  
Qiuping He ◽  
Suwei Gao ◽  
Junhua Lv ◽  
Wei Li ◽  
Feng Liu

2008 ◽  
Vol 2 (4) ◽  
pp. 356-366 ◽  
Author(s):  
Ivan Maillard ◽  
Ute Koch ◽  
Alexis Dumortier ◽  
Olga Shestova ◽  
Lanwei Xu ◽  
...  

2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Futoshi Hashimoto ◽  
Kikuya Sugiura ◽  
Kyoichi Inoue ◽  
Susumu Ikehara

Graft failure is a mortal complication in allogeneic bone marrow transplantation (BMT); T cells and natural killer cells are responsible for graft rejection. However, we have recently demonstrated that the recruitment of donor-derived stromal cells prevents graft failure in allogeneic BMT. This finding prompted us to examine whether a major histocompatibility complex (MHC) restriction exists between hematopoietic stem cells (HSCs) and stromal cells. We transplanted bone marrow cells (BMCs) and bones obtained from various mouse strains and analyzed the cells that accumulated in the engrafted bones. Statistically significant cell accumulation was found in the engrafted bone, which had the same H-2 phenotype as that of the BMCs, whereas only few cells were detected in the engrafted bones of the third-party H-2 phenotypes during the 4 to 6 weeks after BMT. Moreover, the BMCs obtained from the MHC-compatible bone showed significant numbers of both colony-forming units in culture (CFU-C) and spleen colony-forming units (CFU-S). These findings strongly suggest that an MHC restriction exists between HSCs and stromal cells.


Stem Cells ◽  
2001 ◽  
Vol 19 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Kikuya Sugiura ◽  
Hiroko Hisha ◽  
Junji Ishikawa ◽  
Yasushi Adachi ◽  
Shigeru Taketani ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 707-716 ◽  
Author(s):  
Julius G. Juarez ◽  
Nadia Harun ◽  
Marilyn Thien ◽  
Robert Welschinger ◽  
Rana Baraz ◽  
...  

Abstract CXCL12 and VCAM1 retain hematopoietic stem cells (HSCs) in the BM, but the factors mediating HSC egress from the BM to the blood are not known. The sphingosine-1-phosphate receptor 1 (S1P1) is expressed on HSCs, and S1P facilitates the egress of committed hematopoietic progenitors from the BM into the blood. In the present study, we show that both the S1P gradient between the BM and the blood and the expression of S1P1 are essential for optimal HSC mobilization by CXCR4 antagonists, including AMD3100, and for the trafficking of HSCs during steady-state hematopoiesis. We also demonstrate that the S1P1 agonist SEW2871 increases AMD3100-induced HSC and progenitor cell mobilization. These results suggest that the combination of a CXCR4 antagonist and a S1P1 agonist may prove to be sufficient for mobilizing HSCs in normal donors for transplantation purposes, potentially providing a single mobilization procedure and eliminating the need to expose normal donors to G-CSF with its associated side effects.


Sign in / Sign up

Export Citation Format

Share Document