scholarly journals APLF (C2orf13) Is a Novel Human Protein Involved in the Cellular Response to Chromosomal DNA Strand Breaks

2007 ◽  
Vol 27 (10) ◽  
pp. 3793-3803 ◽  
Author(s):  
Natasha Iles ◽  
Stuart Rulten ◽  
Sherif F. El-Khamisy ◽  
Keith W. Caldecott

ABSTRACT Aprataxin and polynucleotide kinase (PNK) are DNA end processing factors that are recruited into the DNA single- and double-strand break repair machinery through phosphorylation-specific interactions with XRCC1 and XRCC4, respectively. These interactions are mediated through a divergent class of forkhead-associated (FHA) domain that binds to peptide sequences in XRCC1 and XRCC4 that are phosphorylated by casein kinase 2 (CK2). Here, we identify the product of the uncharacterized open reading frame C2orf13 as a novel member of this FHA domain family of proteins and we denote this protein APLF (aprataxin- and PNK-like factor). We show that APLF interacts with XRCC1 in vivo and in vitro in a manner that is stimulated by CK2. Yeast two-hybrid analyses suggest that APLF also interacts with the double-strand break repair proteins XRCC4 and XRCC5 (Ku86). We also show that endogenous and yellow fluorescent protein-tagged APLF accumulates at sites of H2O2 or UVA laser-induced chromosomal DNA damage and that this is achieved through at least two mechanisms: one that requires the FHA domain-mediated interaction with XRCC1 and a second that is independent of XRCC1 but requires a novel type of zinc finger motif located at the C terminus of APLF. Finally, we demonstrate that APLF is phosphorylated in a DNA damage- and ATM-dependent manner and that the depletion of APLF from noncycling human SH-SY5Y neuroblastoma cells reduces rates of chromosomal DNA strand break repair following ionizing radiation. These data identify APLF as a novel component of the cellular response to DNA strand breaks in human cells.

Mutagenesis ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 107-118
Author(s):  
Bakhyt T Matkarimov ◽  
Dmitry O Zharkov ◽  
Murat K Saparbaev

Abstract Genotoxic stress generates single- and double-strand DNA breaks either through direct damage by reactive oxygen species or as intermediates of DNA repair. Failure to detect and repair DNA strand breaks leads to deleterious consequences such as chromosomal aberrations, genomic instability and cell death. DNA strand breaks disrupt the superhelical state of cellular DNA, which further disturbs the chromatin architecture and gene activity regulation. Proteins from the poly(ADP-ribose) polymerase (PARP) family, such as PARP1 and PARP2, use NAD+ as a substrate to catalyse the synthesis of polymeric chains consisting of ADP-ribose units covalently attached to an acceptor molecule. PARP1 and PARP2 are regarded as DNA damage sensors that, upon activation by strand breaks, poly(ADP-ribosyl)ate themselves and nuclear acceptor proteins. Noteworthy, the regularly branched structure of poly(ADP-ribose) polymer suggests that the mechanism of its synthesis may involve circular movement of PARP1 around the DNA helix, with a branching point in PAR corresponding to one complete 360° turn. We propose that PARP1 stays bound to a DNA strand break end, but rotates around the helix displaced by the growing poly(ADP-ribose) chain, and that this rotation could introduce positive supercoils into damaged chromosomal DNA. This topology modulation would enable nucleosome displacement and chromatin decondensation around the lesion site, facilitating the access of DNA repair proteins or transcription factors. PARP1-mediated DNA supercoiling can be transmitted over long distances, resulting in changes in the high-order chromatin structures. The available structures of PARP1 are consistent with the strand break-induced PAR synthesis as a driving force for PARP1 rotation around the DNA axis.


2008 ◽  
Vol 28 (10) ◽  
pp. 3561-3561 ◽  
Author(s):  
Natasha Iles ◽  
Stuart Rulten ◽  
Sherif F. El-Khamisy ◽  
Keith W. Caldecott

2008 ◽  
Vol 28 (14) ◽  
pp. 4620-4628 ◽  
Author(s):  
Stuart L. Rulten ◽  
Felipe Cortes-Ledesma ◽  
Liandi Guo ◽  
Natasha J. Iles ◽  
Keith W. Caldecott

ABSTRACT APLF is a novel protein of unknown function that accumulates at sites of chromosomal DNA strand breakage via forkhead-associated (FHA) domain-mediated interactions with XRCC1 and XRCC4. APLF can also accumulate at sites of chromosomal DNA strand breaks independently of the FHA domain via an unidentified mechanism that requires a highly conserved C-terminal tandem zinc finger domain. Here, we show that the zinc finger domain binds tightly to poly(ADP-ribose), a polymeric posttranslational modification synthesized transiently at sites of chromosomal damage to accelerate DNA strand break repair reactions. Protein poly(ADP-ribosyl)ation is tightly regulated and defects in either its synthesis or degradation slow global rates of chromosomal single-strand break repair. Interestingly, APLF negatively affects poly(ADP-ribosyl)ation in vitro, and this activity is dependent on its capacity to bind the polymer. In addition, transient overexpression in human A549 cells of full-length APLF or a C-terminal fragment encoding the tandem zinc finger domain greatly suppresses the appearance of poly(ADP-ribose), in a zinc finger-dependent manner. We conclude that APLF can accumulate at sites of chromosomal damage via zinc finger-mediated binding to poly(ADP-ribose) and is a novel component of poly(ADP-ribose) signaling in mammalian cells.


2015 ◽  
Author(s):  
Askar Yimit ◽  
TaeHyung Kim ◽  
Ranjith Anand ◽  
Sarah Meister ◽  
Jiongwen Ou ◽  
...  

Double-strand DNA breaks occur upon exposure of cells to agents such as ionizing radiation and ultraviolet light or indirectly through replication fork collapse at DNA damage sites. If left unrepaired double-strand breaks can cause genome instability and cell death. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination re-localize into discrete nuclear foci. We identified 29 proteins that co-localize with the recombination repair protein Rad52 in response to DNA damage. Of particular interest, Ygr042w/Mte1, a protein of unknown function, showed robust colocalization with Rad52. Mte1 foci fail to form when the DNA helicase Mph1 is absent. Mte1 and Mph1 form a complex, and are recruited to double-strand breaks in vivo in a mutually dependent manner. Mte1 is important for resolution of Rad52 foci during double-strand break repair, and for suppressing break-induced replication. Together our data indicate that Mte1 functions with Mph1 in double-strand break repair.


Aging ◽  
2015 ◽  
Vol 7 (2) ◽  
pp. 110-122 ◽  
Author(s):  
Faiza Kalfalah ◽  
Sabine Seggewiß ◽  
Regina Walter ◽  
Julia Tigges ◽  
María Moreno-Villanueva ◽  
...  

2020 ◽  
Vol 48 (9) ◽  
pp. 4915-4927 ◽  
Author(s):  
Ignacio Alonso-de Vega ◽  
Maria Cristina Paz-Cabrera ◽  
Magdalena B Rother ◽  
Wouter W Wiegant ◽  
Cintia Checa-Rodríguez ◽  
...  

Abstract Post-translational histone modifications and chromatin remodelling play a critical role controlling the integrity of the genome. Here, we identify histone lysine demethylase PHF2 as a novel regulator of the DNA damage response by regulating DNA damage-induced focus formation of 53BP1 and BRCA1, critical factors in the pathway choice for DNA double strand break repair. PHF2 knockdown leads to impaired BRCA1 focus formation and delays the resolution of 53BP1 foci. Moreover, irradiation-induced RPA phosphorylation and focus formation, as well as localization of CtIP, required for DNA end resection, to sites of DNA lesions are affected by depletion of PHF2. These results are indicative of a defective resection of double strand breaks and thereby an impaired homologous recombination upon PHF2 depletion. In accordance with these data, Rad51 focus formation and homology-directed double strand break repair is inhibited in cells depleted for PHF2. Importantly, we demonstrate that PHF2 knockdown decreases CtIP and BRCA1 protein and mRNA levels, an effect that is dependent on the demethylase activity of PHF2. Furthermore, PHF2-depleted cells display genome instability and are mildly sensitive to the inhibition of PARP. Together these results demonstrate that PHF2 promotes DNA repair by homologous recombination by controlling CtIP-dependent resection of double strand breaks.


2021 ◽  
Author(s):  
Marie-France Langelier ◽  
Ramya Billur ◽  
Aleksandr Sverzhinsky ◽  
Ben E. Black ◽  
John M. Pascal

Upon detecting DNA strand breaks, PARP1 and PARP2 produce the posttranslational modification poly(ADP-ribose) to orchestrate the cellular response to DNA damage. Histone PARylation factor 1 (HPF1) binds to PARP1/2 to directly regulate their catalytic output. HPF1 is required for the modification of serine residues with ADP-ribose, whereas glutamate/aspartate residues are modified in the absence of HPF1. PARP1 is an abundant nuclear protein, whereas HPF1 is present in much lower amounts, raising the question of whether HPF1 can pervasively modulate PARP1 activity. Here we show biochemically that HPF1 efficiently regulates PARP1/2 catalytic output at the sub-stoichiometric ratios matching their relative cellular abundances. HPF1 rapidly associates and dissociates from multiple PARP1 molecules, initiating ADP-ribose modification of serine residues before modification can initiate on glutamate/aspartate residues. HPF1 accelerates the rate of attaching the first ADP-ribose, such that this initiation event is comparable to the rate of the elongation reaction to form poly(ADP-ribose). This hit and run mechanism ensures that HPF1 contributions to the PARP1/2 active site during initiation do not persist and interfere with PAR chain elongation at sites of DNA damage. HPF1 thereby balances initiation and elongation events to regulate PARP1/2 output. Structural analysis of HPF1 in complex with PARP1 provides first insights into the assembly on a DNA strand break, and the HPF1 impact on PARP1 retention on DNA. Our data support the prevalence of the serine-ADP-ribose modification in cells and establish that HPF1 imparts the efficiency of serine-ADP-ribose modification required for an acute response to DNA damage. 


2001 ◽  
Vol 21 (21) ◽  
pp. 7191-7198 ◽  
Author(s):  
John R. Vance ◽  
Thomas E. Wilson

ABSTRACT In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3′-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3′ phosphatase domain of polynucleotide kinase, is a third member of this group of redundant 3′ processing enzymes. Unlike Apn1 and Apn2, Tpp1 is specific for the removal of 3′ phosphates at strand breaks and does not possess more general 3′ phosphodiesterase, exonuclease, or AP endonuclease activities. Deletion ofTPP1 in an apn1 apn2 mutant background dramatically increased the sensitivity of the double mutant to DNA damage caused by H2O2 and bleomycin but not to damage caused by methyl methanesulfonate. The triple mutant was also deficient in the repair of 3′ phosphate lesions left by Tdp1-mediated cleavage of camptothecin-stabilized Top1-DNA covalent complexes. Finally, the tpp1 apn1 apn2 triple mutation displayed synthetic lethality in combination with rad52, possibly implicating postreplication repair in the removal of unrepaired 3′-terminal lesions resulting from endogenous damage. Taken together, these results demonstrate a clear role for the lesion-specific enzyme, Tpp1, in the repair of a subset of DNA strand breaks.


Sign in / Sign up

Export Citation Format

Share Document