A cloned human CCAAT-box-binding factor stimulates transcription from the human hsp70 promoter

1990 ◽  
Vol 10 (12) ◽  
pp. 6709-6717
Author(s):  
L S Lum ◽  
L A Sultzman ◽  
R J Kaufman ◽  
D I Linzer ◽  
B J Wu

The basal promoter of the human hsp70 gene is predominantly controlled by a CCAAT element at position -70 relative to the transcriptional initiation site. We report the isolation of a novel cDNA clone encoding a 114-kDa polypeptide that binds to the CCAAT element of the hsp70 promoter. Expression of this CCAAT-binding factor (CBF) cDNA activated transcription from cotransfected hsp70 promoter-reporter gene constructs in a CCAAT-dependent manner. CCAAT-binding factor shows no homology to the previously identified human CCAAT transcription factor or rat CCAAT/enhancer-binding protein.

1990 ◽  
Vol 10 (12) ◽  
pp. 6709-6717 ◽  
Author(s):  
L S Lum ◽  
L A Sultzman ◽  
R J Kaufman ◽  
D I Linzer ◽  
B J Wu

The basal promoter of the human hsp70 gene is predominantly controlled by a CCAAT element at position -70 relative to the transcriptional initiation site. We report the isolation of a novel cDNA clone encoding a 114-kDa polypeptide that binds to the CCAAT element of the hsp70 promoter. Expression of this CCAAT-binding factor (CBF) cDNA activated transcription from cotransfected hsp70 promoter-reporter gene constructs in a CCAAT-dependent manner. CCAAT-binding factor shows no homology to the previously identified human CCAAT transcription factor or rat CCAAT/enhancer-binding protein.


1992 ◽  
Vol 12 (6) ◽  
pp. 2599-2605 ◽  
Author(s):  
L S Lum ◽  
S Hsu ◽  
M Vaewhongs ◽  
B Wu

Expression of the human hsp70 gene is cell cycle regulated and is inducible by both serum and the adenovirus E1a protein (K. Milarski and R. Morimoto, Proc. Natl. Acad. Sci. USA 83:9517-9521, 1986; M. C. Simon, K. Kitchener, H.-T. Kao, E. Hickey, L. Weber, R. Voellmy, N. Heintz, and J. R. Nevins, Mol. Cell. Biol. 7:2884-2890, 1987; B. Wu, H. Hurst, N. Jones, and R. Morimoto, Mol. Cell. Biol. 6:2994-2999, 1986; B. Wu and R. Morimoto, Proc. Natl. Acad. Sci. USA 82:6070-6074, 1985). This regulated expression is predominantly controlled by the CCAAT element at position -70 relative to the transcriptional initiation site (G. Williams, T. McClanahan, and R. Morimoto, Mol. Cell. Biol. 9:2574-2587, 1989; B. Wu, H. Hurst, N. Jones, and R. Morimoto, Mol. Cell. Biol. 6:2994-2999, 1986). A corresponding CCAAT-binding factor (CBF) of 999 amino acids has recently been cloned and shown to stimulate transcription selectively from the hsp70 promoter in a CCAAT element-dependent manner (L. Lum, L. Sultzman, R. Kaufman, D. Linzer, and B. Wu, Mol. Cell. Biol. 10:6709-6717, 1990). We report here that the first 192 residues of CBF, when fused to the DNA-binding domain of the heterologous activator GAL-4, are necessary and sufficient to mediate E1a-dependent transcriptional activation. E1a and CBF exhibit complex formation in vitro, suggesting that an in vivo interaction between these proteins may be relevant to the well-characterized E1a-induced transcriptional activation of the hsp70 promoter.


1992 ◽  
Vol 12 (6) ◽  
pp. 2599-2605 ◽  
Author(s):  
L S Lum ◽  
S Hsu ◽  
M Vaewhongs ◽  
B Wu

Expression of the human hsp70 gene is cell cycle regulated and is inducible by both serum and the adenovirus E1a protein (K. Milarski and R. Morimoto, Proc. Natl. Acad. Sci. USA 83:9517-9521, 1986; M. C. Simon, K. Kitchener, H.-T. Kao, E. Hickey, L. Weber, R. Voellmy, N. Heintz, and J. R. Nevins, Mol. Cell. Biol. 7:2884-2890, 1987; B. Wu, H. Hurst, N. Jones, and R. Morimoto, Mol. Cell. Biol. 6:2994-2999, 1986; B. Wu and R. Morimoto, Proc. Natl. Acad. Sci. USA 82:6070-6074, 1985). This regulated expression is predominantly controlled by the CCAAT element at position -70 relative to the transcriptional initiation site (G. Williams, T. McClanahan, and R. Morimoto, Mol. Cell. Biol. 9:2574-2587, 1989; B. Wu, H. Hurst, N. Jones, and R. Morimoto, Mol. Cell. Biol. 6:2994-2999, 1986). A corresponding CCAAT-binding factor (CBF) of 999 amino acids has recently been cloned and shown to stimulate transcription selectively from the hsp70 promoter in a CCAAT element-dependent manner (L. Lum, L. Sultzman, R. Kaufman, D. Linzer, and B. Wu, Mol. Cell. Biol. 10:6709-6717, 1990). We report here that the first 192 residues of CBF, when fused to the DNA-binding domain of the heterologous activator GAL-4, are necessary and sufficient to mediate E1a-dependent transcriptional activation. E1a and CBF exhibit complex formation in vitro, suggesting that an in vivo interaction between these proteins may be relevant to the well-characterized E1a-induced transcriptional activation of the hsp70 promoter.


1987 ◽  
Vol 7 (3) ◽  
pp. 1129-1138
Author(s):  
W D Morgan ◽  
G T Williams ◽  
R I Morimoto ◽  
J Greene ◽  
R E Kingston ◽  
...  

We characterized the activity of a human hsp70 gene promoter by in vitro transcription. Analysis of 5' deletion and substitution mutants in HeLa nuclear extracts showed that the basal activity of the promoter depends primarily on a CCAAT-box sequence located at -65. A protein factor, CCAAT-box-binding transcription factor (CTF), was isolated from HeLa nuclear extracts and shown to be responsible for stimulation of transcription in a reconstituted in vitro system. DNase I footprinting revealed that CTF interacts with two CCAAT-box elements located at -65 and -147 of the human hsp70 promoter. An additional binding activity, heat shock transcription factor (HSTF), which interacted with the heat shock element, was also identified in HeLa extract fractions. This demonstrates that the promoter of this human hsp70 gene interacts with at least two positive transcriptional activators, CTF, which is required for CCAAT-box-dependent transcription as in other promoters such as those of globin and herpes simplex virus thymidine kinase genes, and HSTF, which is involved in heat inducibility.


1989 ◽  
Vol 9 (6) ◽  
pp. 2574-2587
Author(s):  
G T Williams ◽  
T K McClanahan ◽  
R I Morimoto

We have examined the promoter sequence requirements for E1a transactivation of the human HSP70 gene by using a transient cotransfection assay. A 5' deletion study has defined a basal transcription unit extending to -74 relative to the transcription initiation site which was fully E1a responsive. Further deletion, abolishing a CCAAT element at -67, drastically reduced basal and E1a-induced expression. A linker-scanner analysis has identified four functional elements within the basal transcription unit which may interact with CTF, SP1, TFIID, and an ATF/AP1-like factor. Sequences between -100 and -188 can partially compensate for mutations in these elements. No mutation specifically abolished E1a inducibility. Any reduction in absolute E1a-induced levels was accompanied by a corresponding reduction in absolute basal levels, thereby maintaining a constant relative fold induction. We conclude that E1a transactivation of the human HSP70 promoter does not require any single basal transcription element. We also examined an HSP70 promoter fragment, containing the CCAAT element at -67 and the purine-rich element at -54, out of its normal context by fusing it upstream of a transcriptionally inactive herpes simplex virus thymidine kinase deletion construct containing only the TATA box. The resulting chimeric promoter was fully E1a responsive. Mutagenesis of this promoter fusion demonstrated that the CCAAT element was essential for detectable basal and E1a-induced expression. Mutations in the purine-rich element resulted in an approximately 10-fold elevation in basal levels and rendered the promoter nonresponsive to E1a.


Sign in / Sign up

Export Citation Format

Share Document